These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25984650)

  • 1. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks.
    Agina EV; Sizov AS; Yablokov MY; Borshchev OV; Bessonov AA; Kirikova MN; Bailey MJ; Ponomarenko SA
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11755-64. PubMed ID: 25984650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes.
    Fernandes IJ; Aroche AF; Schuck A; Lamberty P; Peter CR; Hasenkamp W; Rocha TLAC
    Sci Rep; 2020 Jun; 10(1):8878. PubMed ID: 32483302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet printing of graphene.
    Arapov K; Abbel R; de With G; Friedrich H
    Faraday Discuss; 2014; 173():323-36. PubMed ID: 25466243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics.
    Kwon YT; Kim YS; Lee Y; Kwon S; Lim M; Song Y; Choa YH; Yeo WH
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44071-44079. PubMed ID: 30452228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printing the Ultra-Long Ag Nanowires Inks onto the Flexible Textile Substrate for Stretchable Electronics.
    Ke SH; Xue QW; Pang CY; Guo PW; Yao WJ; Zhu HP; Wu W
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052576
    [No Abstract]   [Full Text] [Related]  

  • 9. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics.
    Liao Y; Zhang R; Wang H; Ye S; Zhou Y; Ma T; Zhu J; Pfefferle LD; Qian J
    RSC Adv; 2019 May; 9(27):15184-15189. PubMed ID: 35514818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet Printing of Reactive Silver Ink on Textiles.
    Shahariar H; Kim I; Soewardiman H; Jur JS
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics.
    Vaseem M; McKerricher G; Shamim A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):177-86. PubMed ID: 26713357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface and Interface Designs in Copper-Based Conductive Inks for Printed/Flexible Electronics.
    Tomotoshi D; Kawasaki H
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.
    Polavarapu L; Manga KK; Yu K; Ang PK; Cao HD; Balapanuru J; Loh KP; Xu QH
    Nanoscale; 2011 May; 3(5):2268-74. PubMed ID: 21491022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate.
    Jeong S; Song HC; Lee WW; Lee SS; Choi Y; Son W; Kim ED; Paik CH; Oh SH; Ryu BH
    Langmuir; 2011 Mar; 27(6):3144-9. PubMed ID: 21338069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions.
    Denneulin A; Bras J; Blayo A; Khelifi B; Roussel-Dherbey F; Neuman C
    Nanotechnology; 2009 Sep; 20(38):385701. PubMed ID: 19713577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly conductive electronics circuits from aerosol jet printed silver inks.
    Skarżyński K; Krzemiński J; Jakubowska M; Słoma M
    Sci Rep; 2021 Sep; 11(1):18141. PubMed ID: 34518558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printable conductive inks used for the fabrication of electronics: an overview.
    Dimitriou E; Michailidis N
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 33735843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.
    Li CY; Liao YC
    ACS Appl Mater Interfaces; 2016 May; 8(18):11868-74. PubMed ID: 27082455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.