These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25984658)

  • 1. 2-Bromoethanesulfonate degradation in bioelectrochemical systems.
    Rago L; Guerrero J; Baeza JA; Guisasola A
    Bioelectrochemistry; 2015 Oct; 105():44-9. PubMed ID: 25984658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate.
    Park SG; Rhee C; Shin SG; Shin J; Mohamed HO; Choi YJ; Chae KJ
    Environ Int; 2019 Oct; 131():105006. PubMed ID: 31330362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production.
    Rago L; Ruiz Y; Baeza JA; Guisasola A; Cortés P
    Bioelectrochemistry; 2015 Dec; 106(Pt B):359-68. PubMed ID: 26138343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective inhibition of methanogenesis by acetylene in single chamber microbial electrolysis cells.
    Wang L; Trujillo S; Liu H
    Bioresour Technol; 2019 Feb; 274():557-560. PubMed ID: 30578015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.
    Jiang Y; Su M; Li D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2720-31. PubMed ID: 24425301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems.
    Wen Q; Yang T; Wang S; Chen Y; Cong L; Qu Y
    J Hazard Mater; 2013 Jan; 244-245():743-9. PubMed ID: 23183343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of several antibiotics and 2-bromoethanesulfonate on the volatile fatty acid degradation, methanogenesis and community structure during thermophilic anaerobic digestion.
    Lins P; Reitschuler C; Illmer P
    Bioresour Technol; 2015 Aug; 190():148-58. PubMed ID: 25935395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditions for high resistance to starvation periods in bioelectrochemical systems.
    Ruiz Y; Ribot-Llobet E; Baeza JA; Guisasola A
    Bioelectrochemistry; 2015 Dec; 106(Pt B):328-34. PubMed ID: 26163745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems.
    Harnisch F; Schröder U
    Chem Soc Rev; 2010 Nov; 39(11):4433-48. PubMed ID: 20830322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in bioelectrochemical systems for bio-products recovery.
    Singh NK; Mathuriya AS; Mehrotra S; Pandit S; Singh A; Jadhav D
    Environ Technol; 2024 Aug; 45(19):3853-3876. PubMed ID: 37491760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronous response in methanogenesis and anaerobic degradation of pentachlorophenol in flooded soil.
    Zhu M; Feng X; Qiu G; Feng J; Zhang L; Brookes PC; Xu J; He Y
    J Hazard Mater; 2019 Jul; 374():258-266. PubMed ID: 31005708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing electron flux, microbial diversity and gene abundance in MFC powered electro-Fenton system by optimizing co-addition of lysozyme and 2-bromoethanesulfonate.
    Wang W; Wang K; Zhao Q; Yang L
    J Environ Manage; 2022 Nov; 322():116067. PubMed ID: 36049306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems.
    Werner CM; Hoppe-Jones C; Saikaly PE; Logan BE; Amy GL
    Water Res; 2015 Apr; 73():56-67. PubMed ID: 25644628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system.
    Tong Y; He Z
    J Hazard Mater; 2013 Nov; 262():614-9. PubMed ID: 24096001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced methane production from cellulose using a two-stage process involving a bioelectrochemical system and a fixed film reactor.
    Sasaki K; Sasaki D; Tsuge Y; Morita M; Kondo A
    Biotechnol Biofuels; 2021 Jan; 14(1):7. PubMed ID: 33407783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review.
    Lee YJ; Lin BL; Xue M; Tsunemi K
    Bioresour Technol; 2022 Nov; 363():127927. PubMed ID: 36096326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrients removal and recovery in bioelectrochemical systems: a review.
    Kelly PT; He Z
    Bioresour Technol; 2014 Feb; 153():351-60. PubMed ID: 24388692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging trends in microbial fuel cell diversification-Critical analysis.
    Shanthi Sravan J; Tharak A; Annie Modestra J; Seop Chang I; Venkata Mohan S
    Bioresour Technol; 2021 Apr; 326():124676. PubMed ID: 33556705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells.
    Zhang S; Yang XL; Li H; Song HL; Wang RC; Dai ZQ
    Bioresour Technol; 2017 Nov; 244(Pt 1):345-352. PubMed ID: 28780269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters.
    Kiely PD; Cusick R; Call DF; Selembo PA; Regan JM; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):388-94. PubMed ID: 20554197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.