BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 2598467)

  • 41. Complementation of defective leucine decarboxylation in fibroblasts from a maple syrup urine disease patient by retrovirus-mediated gene transfer.
    Mueller GM; McKenzie LR; Homanics GE; Watkins SC; Robbins PD; Paul HS
    Gene Ther; 1995 Sep; 2(7):461-8. PubMed ID: 7584124
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catabolism of branched-chain amino acids by diaphragm muscles of fasted and diabetic rats.
    Aftring RP; Manos PN; Buse MG
    Metabolism; 1985 Aug; 34(8):702-11. PubMed ID: 4021802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adrenergic inhibition of branched-chain 2-oxo acid dehydrogenase in rat diaphragm muscle in vitro.
    Palmer TN; Caldecourt MA; Sugden MC
    Biochem J; 1983 Oct; 216(1):63-70. PubMed ID: 6140003
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Branched-chain amino acid metabolism.
    Harper AE; Miller RH; Block KP
    Annu Rev Nutr; 1984; 4():409-54. PubMed ID: 6380539
    [No Abstract]   [Full Text] [Related]  

  • 45. Inhibition of glycine oxidation by pyruvate, alpha-ketoglutarate, and branched-chain alpha-keto acids in rat liver mitochondria: presence of interaction between the glycine cleavage system and alpha-keto acid dehydrogenase complexes.
    Kochi H; Seino H; Ono K
    Arch Biochem Biophys; 1986 Sep; 249(2):263-72. PubMed ID: 3753002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Branched chain 2-oxo-acid dehydrogenase complex of rat liver.
    Parker PJ; Randle PJ
    FEBS Lett; 1978 Jun; 90(1):183-6. PubMed ID: 658436
    [No Abstract]   [Full Text] [Related]  

  • 47. Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis.
    Taylor NL; Heazlewood JL; Day DA; Millar AH
    Plant Physiol; 2004 Feb; 134(2):838-48. PubMed ID: 14764908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diagnosis and mutational analysis of maple syrup urine disease using cell cultures.
    Chuang JL; Chuang DT
    Methods Enzymol; 2000; 324():413-23. PubMed ID: 10989449
    [No Abstract]   [Full Text] [Related]  

  • 49. Practical methods to estimate whole body leucine oxidation in maple syrup urine disease.
    Elsas LJ; Ellerine NP; Klein PD
    Pediatr Res; 1993 May; 33(5):445-51. PubMed ID: 8511017
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Complementation analysis in lymphoid cells from five patients with different forms of maple syrup urine disease.
    Jinno Y; Akaboshi I; Matsuda I
    Hum Genet; 1984; 68(1):54-6. PubMed ID: 6500555
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the mechanism of L-alloisoleucine formation: studies on a healthy subject and in fibroblasts from normals and patients with maple syrup urine disease.
    Schadewaldt P; Hammen HW; Dalle-Feste C; Wendel U
    J Inherit Metab Dis; 1990; 13(2):137-50. PubMed ID: 2116545
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular basis of intermittent maple syrup urine disease: novel mutations in the E2 gene of the branched-chain alpha-keto acid dehydrogenase complex.
    Tsuruta M; Mitsubuchi H; Mardy S; Miura Y; Hayashida Y; Kinugasa A; Ishitsu T; Matsuda I; Indo Y
    J Hum Genet; 1998; 43(2):91-100. PubMed ID: 9621512
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enzyme activity in classical and variant forms of maple syrup urine disease.
    Dancis J; Hutzler J; Snyderman SE; Cox RP
    J Pediatr; 1972 Aug; 81(2):312-20. PubMed ID: 5042489
    [No Abstract]   [Full Text] [Related]  

  • 54. L-Leucine activates branched chain alpha-keto acid dehydrogenase in rat adipose tissue.
    Frick GP; Tai LR; Blinder L; Goodman HM
    J Biol Chem; 1981 Mar; 256(6):2618-20. PubMed ID: 7009595
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on the regulation of the branched chain alpha-keto acid dehydrogenase in the perfused rat liver.
    Patel TB; DeBuysere MS; Barron LL; Olson MS
    J Biol Chem; 1981 Sep; 256(17):9009-15. PubMed ID: 7263696
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Absence of branched chain acyl-transferase as a cause of maple syrup urine disease.
    Danner DJ; Armstrong N; Heffelfinger SC; Sewell ET; Priest JH; Elsas LJ
    J Clin Invest; 1985 Mar; 75(3):858-60. PubMed ID: 3980729
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oxidation of branched-chain amino acids in skeletal muscle and liver of rat. Effects of octanoate and energy state.
    Spydevold O; Hokland B
    Biochim Biophys Acta; 1981 Sep; 676(3):279-88. PubMed ID: 6793084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular basis of maple syrup urine disease and stable correction by retroviral gene transfer.
    Chuang DT; Davie JR; Wynn RM; Chuang JL; Koyata H; Cox RP
    J Nutr; 1995 Jun; 125(6 Suppl):1766S-1772S. PubMed ID: 7782943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gene preference in maple syrup urine disease.
    Nellis MM; Danner DJ
    Am J Hum Genet; 2001 Jan; 68(1):232-7. PubMed ID: 11112664
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of oxidative decarboxylation of branched-chain 2-oxo acids in rat liver mitochondria.
    Cieśla J; Wałajtys-Rode E
    Int J Biochem; 1986; 18(11):1015-21. PubMed ID: 3803692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.