BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25984837)

  • 1. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences.
    Pratas D; Silva RM; Pinho AJ; Ferreira PJ
    Sci Rep; 2015 May; 5():10203. PubMed ID: 25984837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smash++: an alignment-free and memory-efficient tool to find genomic rearrangements.
    Hosseini M; Pratas D; Morgenstern B; Pinho AJ
    Gigascience; 2020 May; 9(5):. PubMed ID: 32432328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving complex structural genomic rearrangements using a randomized approach.
    Zhao X; Emery SB; Myers B; Kidd JM; Mills RE
    Genome Biol; 2016 Jun; 17(1):126. PubMed ID: 27287201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Looking for Broken TAD Boundaries and Changes on DNA Interactions: Clinical Guide to 3D Chromatin Change Analysis in Complex Chromosomal Rearrangements and Chromothripsis.
    Yauy K; Gatinois V; Guignard T; Sati S; Puechberty J; Gaillard JB; Schneider A; Pellestor F
    Methods Mol Biol; 2018; 1769():353-361. PubMed ID: 29564835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OPTIMA: sensitive and accurate whole-genome alignment of error-prone genomic maps by combinatorial indexing and technology-agnostic statistical analysis.
    Verzotto D; M Teo AS; Hillmer AM; Nagarajan N
    Gigascience; 2016; 5():2. PubMed ID: 26793302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refining borders of genome-rearrangements including repetitions.
    Arjona-Medina JA; Trelles O
    BMC Genomics; 2016 Oct; 17(Suppl 8):804. PubMed ID: 27801292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assignment of orthologous genes via genome rearrangement.
    Chen X; Zheng J; Fu Z; Nan P; Zhong Y; Lonardi S; Jiang T
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(4):302-15. PubMed ID: 17044168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing the history of large-scale genomic changes: biological questions and computational challenges.
    Ma J
    J Comput Biol; 2011 Jul; 18(7):879-93. PubMed ID: 21563973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TSD: A Computational Tool To Study the Complex Structural Variants Using PacBio Targeted Sequencing Data.
    Meng G; Tan Y; Fan Y; Wang Y; Yang G; Fanning G; Qiu Y
    G3 (Bethesda); 2019 May; 9(5):1371-1376. PubMed ID: 30850377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorting permutations by fragmentation-weighted operations.
    Alexandrino AO; Lintzmayer CN; Dias Z
    J Bioinform Comput Biol; 2020 Apr; 18(2):2050006. PubMed ID: 32326802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data.
    AbuĂ­n JM; Pichel JC; Pena TF; Amigo J
    PLoS One; 2016; 11(5):e0155461. PubMed ID: 27182962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An update of the goat genome assembly using dense radiation hybrid maps allows detailed analysis of evolutionary rearrangements in Bovidae.
    Du X; Servin B; Womack JE; Cao J; Yu M; Dong Y; Wang W; Zhao S
    BMC Genomics; 2014 Jul; 15(1):625. PubMed ID: 25052253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Massive NGS data analysis reveals hundreds of potential novel gene fusions in human cell lines.
    Gioiosa S; Bolis M; Flati T; Massini A; Garattini E; Chillemi G; Fratelli M; Castrignanò T
    Gigascience; 2018 Oct; 7(10):. PubMed ID: 29860514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring TCGA Pan-Cancer data at the UCSC Cancer Genomics Browser.
    Cline MS; Craft B; Swatloski T; Goldman M; Ma S; Haussler D; Zhu J
    Sci Rep; 2013 Oct; 3():2652. PubMed ID: 24084870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid detection and curation of conserved DNA via enhanced-BLAT and EvoPrinterHD analysis.
    Yavatkar AS; Lin Y; Ross J; Fann Y; Brody T; Odenwald WF
    BMC Genomics; 2008 Feb; 9():106. PubMed ID: 18307801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes.
    Alekseyev MA
    J Comput Biol; 2008 Oct; 15(8):1117-31. PubMed ID: 18788907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VDJServer: A Cloud-Based Analysis Portal and Data Commons for Immune Repertoire Sequences and Rearrangements.
    Christley S; Scarborough W; Salinas E; Rounds WH; Toby IT; Fonner JM; Levin MK; Kim M; Mock SA; Jordan C; Ostmeyer J; Buntzman A; Rubelt F; Davila ML; Monson NL; Scheuermann RH; Cowell LG
    Front Immunol; 2018; 9():976. PubMed ID: 29867956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using GenBank.
    Sayers EW; Karsch-Mizrachi I
    Methods Mol Biol; 2016; 1374():1-22. PubMed ID: 26519398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Rearrangement Analysis : Cut and Join Genome Rearrangements and Gene Cluster Preserving Approaches.
    Hartmann T; Middendorf M; Bernt M
    Methods Mol Biol; 2024; 2802():215-245. PubMed ID: 38819562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ensembl Genome Browser: Strategies for Accessing Eukaryotic Genome Data.
    Newman V; Moore B; Sparrow H; Perry E
    Methods Mol Biol; 2018; 1757():115-139. PubMed ID: 29761458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.