These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25984986)

  • 1. Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography.
    Khaleghi M; Guignard J; Furlong C; Rosowski JJ
    J Biomed Opt; 2015; 20(11):111202. PubMed ID: 25984986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography.
    Khaleghi M; Furlong C; Ravicz M; Cheng JT; Rosowski JJ
    J Biomed Opt; 2015 May; 20(5):051028. PubMed ID: 25652791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis.
    Cheng JT; Hamade M; Merchant SN; Rosowski JJ; Harrington E; Furlong C
    J Acoust Soc Am; 2013 Feb; 133(2):918-37. PubMed ID: 23363110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D displacement measurements of the tympanic membrane with digital holographic interferometry.
    Solís SM; Santoyo FM; Hernández-Montes Mdel S
    Opt Express; 2012 Feb; 20(5):5613-21. PubMed ID: 22418368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New data on the motion of the normal and reconstructed tympanic membrane.
    Rosowski JJ; Cheng JT; Merchant SN; Harrington E; Furlong C
    Otol Neurotol; 2011 Dec; 32(9):1559-67. PubMed ID: 21956597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane.
    Rosowski JJ; Dobrev I; Khaleghi M; Lu W; Cheng JT; Harrington E; Furlong C
    Hear Res; 2013 Jul; 301():44-52. PubMed ID: 23247058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion of the surface of the human tympanic membrane measured with stroboscopic holography.
    Cheng JT; Aarnisalo AA; Harrington E; Hernandez-Montes Mdel S; Furlong C; Merchant SN; Rosowski JJ
    Hear Res; 2010 May; 263(1-2):66-77. PubMed ID: 20034549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined high-speed holographic shape and full-field displacement measurements of tympanic membrane.
    Razavi P; Tang H; Rosowski JJ; Furlong C; Cheng JT
    J Biomed Opt; 2018 Sep; 24(3):1-12. PubMed ID: 30255670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-field transient vibrometry of the human tympanic membrane by local phase correlation and high-speed holography.
    Dobrev I; Furlong C; Cheng JT; Rosowski JJ
    J Biomed Opt; 2014 Sep; 19(9):96001. PubMed ID: 25191832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holographic otoscope using dual-shot-acquisition for the study of eardrum biomechanical displacements.
    Flores-Moreno JM; Mendoza Santoyo F; Estrada Rico JC
    Appl Opt; 2013 Mar; 52(8):1731-42. PubMed ID: 23478779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algorithm for reconstructing wide space-bandwidth information in parallel two-step phase-shifting digital holography.
    Tahara T; Shimozato Y; Xia P; Ito Y; Awatsuji Y; Nishio K; Ura S; Matoba O; Kubota T
    Opt Express; 2012 Aug; 20(18):19806-14. PubMed ID: 23037033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz.
    Rosowski JJ; Cheng JT; Ravicz ME; Hulli N; Hernandez-Montes M; Harrington E; Furlong C
    Hear Res; 2009 Jul; 253(1-2):83-96. PubMed ID: 19328841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex object wave direct extraction method in off-axis digital holography.
    Kim D; Magnusson R; Jin M; Lee J; Chegal W
    Opt Express; 2013 Feb; 21(3):3658-68. PubMed ID: 23481822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous measurement of in-plane and out-of-plane displacement derivatives using dual-wavelength digital holographic interferometry.
    Rajshekhar G; Gorthi SS; Rastogi P
    Appl Opt; 2011 Dec; 50(34):H16-21. PubMed ID: 22193002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-plane and out-of-plane motions of the human tympanic membrane.
    Khaleghi M; Cheng JT; Furlong C; Rosowski JJ
    J Acoust Soc Am; 2016 Jan; 139(1):104-17. PubMed ID: 26827009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holographic otoscope for nanodisplacement measurements of surfaces under dynamic excitation.
    Flores-Moreno JM; Furlong C; Rosowski JJ; Harrington E; Cheng JT; Scarpino C; Santoyo FM
    Scanning; 2011; 33(5):342-52. PubMed ID: 21898459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero order synthetic hologram with a sinusoidal phase carrier for generation of multiple beams.
    Arrizón V; Ruiz U; Mendez G; Apolinar-Iribe A
    Opt Express; 2009 Feb; 17(4):2663-9. PubMed ID: 19219171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic measurement of three-dimensional absolute displacements using dual-camera multiplexed digital holography.
    Pan Y; Wang K
    Appl Opt; 2022 Jan; 61(3):797-805. PubMed ID: 35200785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography.
    Schedin S; Pedrini G; Tiziani HJ; Santoyo FM
    Appl Opt; 1999 Dec; 38(34):7056-62. PubMed ID: 18324250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorful reconstructions from a thin multi-plane phase hologram.
    Makowski M; Sypek M; Kolodziejczyk A
    Opt Express; 2008 Jul; 16(15):11618-23. PubMed ID: 18648483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.