These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 25985155)
21. Mechanical stimulation in the engineering of heart muscle. Liaw NY; Zimmermann WH Adv Drug Deliv Rev; 2016 Jan; 96():156-60. PubMed ID: 26362920 [TBL] [Abstract][Full Text] [Related]
22. Tissue engineering of a differentiated cardiac muscle construct. Zimmermann WH; Schneiderbanger K; Schubert P; Didié M; Münzel F; Heubach JF; Kostin S; Neuhuber WL; Eschenhagen T Circ Res; 2002 Feb; 90(2):223-30. PubMed ID: 11834716 [TBL] [Abstract][Full Text] [Related]
23. Piezo-bending actuators for isometric or auxotonic contraction analysis of engineered heart tissue. Mannhardt I; Warncke C; Trieu HK; Müller J; Eschenhagen T J Tissue Eng Regen Med; 2019 Jan; 13(1):3-11. PubMed ID: 30334614 [TBL] [Abstract][Full Text] [Related]
24. Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation. Jackman CP; Ganapathi AM; Asfour H; Qian Y; Allen BW; Li Y; Bursac N Biomaterials; 2018 Mar; 159():48-58. PubMed ID: 29309993 [TBL] [Abstract][Full Text] [Related]
25. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Barash Y; Dvir T; Tandeitnik P; Ruvinov E; Guterman H; Cohen S Tissue Eng Part C Methods; 2010 Dec; 16(6):1417-26. PubMed ID: 20367291 [TBL] [Abstract][Full Text] [Related]
26. Slow force response and auto-regulation of contractility in heterogeneous myocardium. Markhasin VS; Balakin AA; Katsnelson LB; Konovalov P; Lookin ON; Protsenko Y; Solovyova O Prog Biophys Mol Biol; 2012; 110(2-3):305-18. PubMed ID: 22929956 [TBL] [Abstract][Full Text] [Related]
27. [Characteristics of force-frequency relations in the myocardium of the squirrel Citellus undulatus]. Nakipova OV; Andreeva LA; Chumaeva NA; Gaĭnullin RZ; Anufriev AI; Kosarskiĭ LS; Kukushkin NI; Kolaeva SG Biofizika; 2002; 47(4):735-43. PubMed ID: 12298215 [TBL] [Abstract][Full Text] [Related]
28. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. Ruan JL; Tulloch NL; Razumova MV; Saiget M; Muskheli V; Pabon L; Reinecke H; Regnier M; Murry CE Circulation; 2016 Nov; 134(20):1557-1567. PubMed ID: 27737958 [TBL] [Abstract][Full Text] [Related]
29. Enhancing all-in-one bioreactors by combining interstitial perfusion, electrical stimulation, on-line monitoring and testing within a single chamber for cardiac constructs. Visone R; Talò G; Lopa S; Rasponi M; Moretti M Sci Rep; 2018 Nov; 8(1):16944. PubMed ID: 30446711 [TBL] [Abstract][Full Text] [Related]
30. Modeling myocardial growth and hypertrophy in engineered heart muscle. Tiburcy M; Zimmermann WH Trends Cardiovasc Med; 2014 Jan; 24(1):7-13. PubMed ID: 23953977 [TBL] [Abstract][Full Text] [Related]
31. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Stoppel WL; Kaplan DL; Black LD Adv Drug Deliv Rev; 2016 Jan; 96():135-55. PubMed ID: 26232525 [TBL] [Abstract][Full Text] [Related]
32. Optical mapping of impulse propagation in engineered cardiac tissue. Radisic M; Fast VG; Sharifov OF; Iyer RK; Park H; Vunjak-Novakovic G Tissue Eng Part A; 2009 Apr; 15(4):851-60. PubMed ID: 18847360 [TBL] [Abstract][Full Text] [Related]
33. Influence of the sarcoplasmic reticulum on the inotropic responses of the rat myocardium resulting from changes in rate and rhythm. Mill JG; Vassallo DV; Leite CM; Campagnaro P Braz J Med Biol Res; 1994 Jun; 27(6):1455-65. PubMed ID: 7894361 [TBL] [Abstract][Full Text] [Related]
34. Variable optimization for the formation of three-dimensional self-organized heart muscle. Khait L; Hodonsky CJ; Birla RK In Vitro Cell Dev Biol Anim; 2009 Dec; 45(10):592-601. PubMed ID: 19756885 [TBL] [Abstract][Full Text] [Related]
35. Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction. Dolnikov K; Shilkrut M; Zeevi-Levin N; Gerecht-Nir S; Amit M; Danon A; Itskovitz-Eldor J; Binah O Stem Cells; 2006 Feb; 24(2):236-45. PubMed ID: 16322641 [TBL] [Abstract][Full Text] [Related]
36. [Effect of calcium on the force-frequency ratio and resting potentiation in the myocardium of mature and old rats]. Lobanok LM; Shilov VV; Kiriliuk AP Biull Eksp Biol Med; 1986 Mar; 101(3):261-3. PubMed ID: 3955203 [TBL] [Abstract][Full Text] [Related]
37. Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel. Chiu LL; Janic K; Radisic M Int J Artif Organs; 2012 Apr; 35(4):237-50. PubMed ID: 22505198 [TBL] [Abstract][Full Text] [Related]
38. Irregular rhythm adversely influences calcium handling in ventricular myocardium: implications for the interaction between heart failure and atrial fibrillation. Ling LH; Khammy O; Byrne M; Amirahmadi F; Foster A; Li G; Zhang L; dos Remedios C; Chen C; Kaye DM Circ Heart Fail; 2012 Nov; 5(6):786-93. PubMed ID: 23014130 [TBL] [Abstract][Full Text] [Related]
39. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities. Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210 [TBL] [Abstract][Full Text] [Related]
40. Rest-dependence of twitch amplitude and sarcoplasmic reticulum calcium content in the developing rat myocardium. Ferraz SA; Bassani JW; Bassani RA J Mol Cell Cardiol; 2001 Apr; 33(4):711-22. PubMed ID: 11273724 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]