BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25985426)

  • 1. Motion and deformation of a droplet in a microfluidic cross-junction.
    Boruah N; Dimitrakopoulos P
    J Colloid Interface Sci; 2015 Sep; 453():216-225. PubMed ID: 25985426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows.
    Lee D; Shen AQ
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows.
    Cubaud T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026307. PubMed ID: 19792249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation and scaling of droplet deformation in a hyperbolic flow.
    Kadivar E; Alizadeh A
    Eur Phys J E Soft Matter; 2017 Mar; 40(3):31. PubMed ID: 28324241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient dynamics of an elastic capsule in a microfluidic constriction.
    Park SY; Dimitrakopoulos P
    Soft Matter; 2013 Oct; 9(37):. PubMed ID: 24223621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive droplet sorting using viscoelastic flow focusing.
    Hatch AC; Patel A; Beer NR; Lee AP
    Lab Chip; 2013 Apr; 13(7):1308-15. PubMed ID: 23380996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion of an elastic capsule in a square microfluidic channel.
    Kuriakose S; Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011906. PubMed ID: 21867212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of a Viscous Droplet in Return Bends of Microfluidic Channels.
    Singh JL; Wang Y; Zhang Y; Melbye JA; Brooks AE; Brooks BD
    J Fluids Eng; 2020 Sep; 142(9):091401. PubMed ID: 32713985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the distance of highly confined droplets in a capillary by interfacial tension for merging on-demand.
    Ferraro D; Serra M; Filippi D; Zago L; Guglielmin E; Pierno M; Descroix S; Viovy JL; Mistura G
    Lab Chip; 2018 Dec; 19(1):136-146. PubMed ID: 30484796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometrically-mediated snap-off of water-in-oil emulsion droplets in microfluidic flow focusing devices.
    Yao J; Oakey J
    J Oil Gas Petrochem Sci; 2018; 1(2):42-46. PubMed ID: 32864607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion of a droplet through microfluidic ratchets.
    Liu J; Yap YF; Nguyen NT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046319. PubMed ID: 19905448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the flow topology inside droplets moving in rectangular microchannels.
    Ma S; Sherwood JM; Huck WT; Balabani S
    Lab Chip; 2014 Sep; 14(18):3611-20. PubMed ID: 25072660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Break-up of droplets in a concentrated emulsion flowing through a narrow constriction.
    Rosenfeld L; Fan L; Chen Y; Swoboda R; Tang SK
    Soft Matter; 2014 Jan; 10(3):421-30. PubMed ID: 24651830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.