These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25985773)

  • 1. Salt tolerance is evolutionarily labile in a diverse set of angiosperm families.
    Moray C; Hua X; Bromham L
    BMC Evol Biol; 2015 May; 15():90. PubMed ID: 25985773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroevolutionary patterns of salt tolerance in angiosperms.
    Bromham L
    Ann Bot; 2015 Feb; 115(3):333-41. PubMed ID: 25452251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt tolerance evolves more frequently in C4 grass lineages.
    Bromham L; Bennett TH
    J Evol Biol; 2014 Mar; 27(3):653-9. PubMed ID: 24494637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated evolution of salt-tolerance in grasses.
    Bennett TH; Flowers TJ; Bromham L
    Biol Lett; 2013 Apr; 9(2):20130029. PubMed ID: 23445947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute diversification rates in angiosperm clades.
    Magallón S; Sanderson MJ
    Evolution; 2001 Sep; 55(9):1762-80. PubMed ID: 11681732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. More than sixty origins of pantoporate pollen in angiosperms.
    Prieu C; Sauquet H; Gouyon PH; Albert B
    Am J Bot; 2017 Dec; 104(12):1837-1845. PubMed ID: 29217673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting species' tolerance to salinity and alkalinity using distribution data and geochemical modelling: a case study using Australian grasses.
    Saslis-Lagoudakis CH; Hua X; Bui E; Moray C; Bromham L
    Ann Bot; 2015 Feb; 115(3):343-51. PubMed ID: 25538113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenomic Insights into Deep Phylogeny of Angiosperms Based on Broad Nuclear Gene Sampling.
    Yang L; Su D; Chang X; Foster CSP; Sun L; Huang CH; Zhou X; Zeng L; Ma H; Zhong B
    Plant Commun; 2020 Mar; 1(2):100027. PubMed ID: 33367231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils.
    Feild TS; Arens NC
    New Phytol; 2005 May; 166(2):383-408. PubMed ID: 15819904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive evolution of seed oil content in angiosperms: accounting for the global patterns of seed oils.
    Sanyal A; Decocq G
    BMC Evol Biol; 2016 Sep; 16(1):187. PubMed ID: 27613109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Keeping it simple: flowering plants tend to retain, and revert to, simple leaves.
    Geeta R; Dávalos LM; Levy A; Bohs L; Lavin M; Mummenhoff K; Sinha N; Wojciechowski MF
    New Phytol; 2012 Jan; 193(2):481-93. PubMed ID: 22091556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thirty clues to the exceptional diversification of flowering plants.
    Magallón S; Sánchez-Reyes LL; Gómez-Acevedo SL
    Ann Bot; 2019 Feb; 123(3):491-503. PubMed ID: 30376040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multigene analyses identify the three earliest lineages of extant flowering plants.
    Parkinson CL; Adams KL; Palmer JD
    Curr Biol; 1999 Dec 16-30; 9(24):1485-8. PubMed ID: 10607592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed size and its rate of evolution correlate with species diversification across angiosperms.
    Igea J; Miller EF; Papadopulos AST; Tanentzap AJ
    PLoS Biol; 2017 Jul; 15(7):e2002792. PubMed ID: 28723902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Darwin's abominable mystery: Insights from a supertree of the angiosperms.
    Davies TJ; Barraclough TG; Chase MW; Soltis PS; Soltis DE; Savolainen V
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):1904-9. PubMed ID: 14766971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced brassica, Arabidopsis and other angiosperm species.
    Shi J; Huang S; Fu D; Yu J; Wang X; Hua W; Liu S; Liu G; Wang H
    PLoS One; 2013; 8(3):e59988. PubMed ID: 23555856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age at maturity and diversification in woody angiosperms.
    Verdú M
    Evolution; 2002 Jul; 56(7):1352-61. PubMed ID: 12206237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenomic analysis of the APETALA2 transcription factor subfamily across angiosperms reveals both deep conservation and lineage-specific patterns.
    Kerstens MHL; Schranz ME; Bouwmeester K
    Plant J; 2020 Aug; 103(4):1516-1524. PubMed ID: 32436321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An angiosperm-wide analysis of the gynodioecy-dioecy pathway.
    Dufay M; Champelovier P; Käfer J; Henry JP; Mousset S; Marais GA
    Ann Bot; 2014 Sep; 114(3):539-48. PubMed ID: 25091207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary associations between polyploidy, clonal reproduction, and perenniality in the angiosperms.
    Van Drunen WE; Husband BC
    New Phytol; 2019 Nov; 224(3):1266-1277. PubMed ID: 31215649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.