These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
800 related articles for article (PubMed ID: 25985872)
1. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9. Koo T; Lee J; Kim JS Mol Cells; 2015 Jun; 38(6):475-81. PubMed ID: 25985872 [TBL] [Abstract][Full Text] [Related]
2. Applications of Alternative Nucleases in the Age of CRISPR/Cas9. Guha TK; Edgell DR Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186020 [TBL] [Abstract][Full Text] [Related]
4. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases. Ishida K; Gee P; Hotta A Int J Mol Sci; 2015 Oct; 16(10):24751-71. PubMed ID: 26501275 [TBL] [Abstract][Full Text] [Related]
5. A beginner's guide to gene editing. Harrison PT; Hart S Exp Physiol; 2018 Apr; 103(4):439-448. PubMed ID: 29282799 [TBL] [Abstract][Full Text] [Related]
6. Plant genome engineering in full bloom. Lozano-Juste J; Cutler SR Trends Plant Sci; 2014 May; 19(5):284-7. PubMed ID: 24674878 [TBL] [Abstract][Full Text] [Related]
7. Construction and Evaluation of Zinc Finger Nucleases. Ochiai H; Yamamoto T Methods Mol Biol; 2023; 2637():1-25. PubMed ID: 36773134 [TBL] [Abstract][Full Text] [Related]
8. Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Kim D; Luk K; Wolfe SA; Kim JS Annu Rev Biochem; 2019 Jun; 88():191-220. PubMed ID: 30883196 [TBL] [Abstract][Full Text] [Related]
9. Genome editing comes of age. Kim JS Nat Protoc; 2016 Sep; 11(9):1573-8. PubMed ID: 27490630 [TBL] [Abstract][Full Text] [Related]
10. Basics of genome editing technology and its application in livestock species. Petersen B Reprod Domest Anim; 2017 Aug; 52 Suppl 3():4-13. PubMed ID: 28815851 [TBL] [Abstract][Full Text] [Related]
11. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. Ul Ain Q; Chung JY; Kim YH J Control Release; 2015 May; 205():120-7. PubMed ID: 25553825 [TBL] [Abstract][Full Text] [Related]
12. [Genome-editing: focus on the off-target effects]. He X; Gu F Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1757-1775. PubMed ID: 29082723 [TBL] [Abstract][Full Text] [Related]
13. Therapeutic Genome Editing and its Potential Enhancement through CRISPR Guide RNA and Cas9 Modifications. Batzir NA; Tovin A; Hendel A Pediatr Endocrinol Rev; 2017 Jun; 14(4):353-363. PubMed ID: 28613045 [TBL] [Abstract][Full Text] [Related]
14. A guide to genome engineering with programmable nucleases. Kim H; Kim JS Nat Rev Genet; 2014 May; 15(5):321-34. PubMed ID: 24690881 [TBL] [Abstract][Full Text] [Related]
15. Generating a Genome Editing Nuclease for Targeted Mutagenesis in Human Cells. He Z; Kee K Methods Mol Biol; 2017; 1498():153-162. PubMed ID: 27709574 [TBL] [Abstract][Full Text] [Related]
16. Genome editing and the next generation of antiviral therapy. Stone D; Niyonzima N; Jerome KR Hum Genet; 2016 Sep; 135(9):1071-82. PubMed ID: 27272125 [TBL] [Abstract][Full Text] [Related]
17. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Mashimo T Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523 [TBL] [Abstract][Full Text] [Related]
18. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs. Fu Y; Reyon D; Joung JK Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334 [TBL] [Abstract][Full Text] [Related]
19. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants]. Ma XL; Liu YG Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775 [TBL] [Abstract][Full Text] [Related]
20. CRISPR/Cas9: an advanced tool for editing plant genomes. Samanta MK; Dey A; Gayen S Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]