BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 25986411)

  • 1. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production.
    Antal TK; Krendeleva TE; Tyystjärvi E
    Photosynth Res; 2015 Sep; 125(3):357-81. PubMed ID: 25986411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia.
    Clowez S; Godaux D; Cardol P; Wollman FA; Rappaport F
    J Biol Chem; 2015 Mar; 290(13):8666-76. PubMed ID: 25691575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions.
    Alric J; Lavergne J; Rappaport F
    Biochim Biophys Acta; 2010 Jan; 1797(1):44-51. PubMed ID: 19651104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of the chloroplast hydrogenase in the microalga Chlamydomonas: the role of hydrogenase and state transitions during photosynthetic activation in anaerobiosis.
    Ghysels B; Godaux D; Matagne RF; Cardol P; Franck F
    PLoS One; 2013; 8(5):e64161. PubMed ID: 23717558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical approaches to photobiological hydrogen production in unicellular green algae.
    Hemschemeier A; Melis A; Happe T
    Photosynth Res; 2009; 102(2-3):523-40. PubMed ID: 19291418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
    Melis A
    Planta; 2007 Oct; 226(5):1075-86. PubMed ID: 17721788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.
    Antal TK; Krendeleva TE; Rubin AB
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):3-15. PubMed ID: 20878321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High yields of hydrogen production induced by meta-substituted dichlorophenols biodegradation from the green alga Scenedesmus obliquus.
    Papazi A; Andronis E; Ioannidis NE; Chaniotakis N; Kotzabasis K
    PLoS One; 2012; 7(11):e49037. PubMed ID: 23145057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgae: a green source of renewable H(2).
    Ghirardi ML; Zhang L; Lee JW; Flynn T; Seibert M; Greenbaum E; Melis A
    Trends Biotechnol; 2000 Dec; 18(12):506-11. PubMed ID: 11102662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microoxic Niches within the Thylakoid Stroma of Air-Grown Chlamydomonas reinhardtii Protect [FeFe]-Hydrogenase and Support Hydrogen Production under Fully Aerobic Environment.
    Liran O; Semyatich R; Milrad Y; Eilenberg H; Weiner I; Yacoby I
    Plant Physiol; 2016 Sep; 172(1):264-71. PubMed ID: 27443604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
    Hemschemeier A; Fouchard S; Cournac L; Peltier G; Happe T
    Planta; 2008 Jan; 227(2):397-407. PubMed ID: 17885762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Iron Homeostasis and Use in Chloroplasts.
    Kroh GE; Pilon M
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogenases in green algae: do they save the algae's life and solve our energy problems?
    Happe T; Hemschemeier A; Winkler M; Kaminski A
    Trends Plant Sci; 2002 Jun; 7(6):246-50. PubMed ID: 12049920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga).
    Zhang L; Happe T; Melis A
    Planta; 2002 Feb; 214(4):552-61. PubMed ID: 11925039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.
    Marchand J; Heydarizadeh P; Schoefs B; Spetea C
    Cell Mol Life Sci; 2018 Jun; 75(12):2153-2176. PubMed ID: 29541792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paradigm Shift in Algal H
    Tóth SZ; Yacoby I
    Trends Biotechnol; 2019 Nov; 37(11):1159-1163. PubMed ID: 31174881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar-driven hydrogen production in green algae.
    Burgess SJ; Tamburic B; Zemichael F; Hellgardt K; Nixon PJ
    Adv Appl Microbiol; 2011; 75():71-110. PubMed ID: 21807246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions.
    Xiong W; Zhao X; Zhu G; Shao C; Li Y; Ma W; Xu X; Tang R
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):11961-5. PubMed ID: 26302695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms.
    Meuser JE; Ananyev G; Wittig LE; Kosourov S; Ghirardi ML; Seibert M; Dismukes GC; Posewitz MC
    J Biotechnol; 2009 Jun; 142(1):21-30. PubMed ID: 19480944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.
    Hemschemeier A; Happe T
    Biochim Biophys Acta; 2011 Aug; 1807(8):919-26. PubMed ID: 21376011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.