These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25986433)

  • 1. Multi-scale homogenization of blood flow in 3-dimensional human cerebral microvascular networks.
    El-Bouri WK; Payne SJ
    J Theor Biol; 2015 Sep; 380():40-7. PubMed ID: 25986433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the effects of a penetrating vessel occlusion with a multi-scale microvasculature model of the human cerebral cortex.
    El-Bouri WK; Payne SJ
    Neuroimage; 2018 May; 172():94-106. PubMed ID: 29360574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical model of the penetrating arterioles and venules in the human cerebral cortex.
    El-Bouri WK; Payne SJ
    Microcirculation; 2016 Oct; 23(7):580-590. PubMed ID: 27647737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood flow regulation in the cerebral microvasculature with an arcadal network: a numerical simulation.
    Niimi H; Komai Y; Yamaguchi S
    Indian J Exp Biol; 2007 Jan; 45(1):41-7. PubMed ID: 17249326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling dynamic changes in blood flow and volume in the cerebral vasculature.
    Payne SJ; El-Bouri WK
    Neuroimage; 2018 Aug; 176():124-137. PubMed ID: 29680470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of network structure on the transport of blood in the human cerebral microvasculature.
    Su SW; Catherall M; Payne S
    Microcirculation; 2012 Feb; 19(2):175-87. PubMed ID: 22111581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvascular hemodynamics in human hypothermic circulatory arrest and selective antegrade cerebral perfusion.
    Elbers PW; Ozdemir A; Heijmen RH; Heeren J; van Iterson M; van Dongen EP; Ince C
    Crit Care Med; 2010 Jul; 38(7):1548-53. PubMed ID: 20473147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opening the blood-brain and blood-tumor barriers in experimental rat brain tumors: the effect of intracarotid hyperosmolar mannitol on capillary permeability and blood flow.
    Hiesiger EM; Voorhies RM; Basler GA; Lipschutz LE; Posner JB; Shapiro WR
    Ann Neurol; 1986 Jan; 19(1):50-9. PubMed ID: 3080944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular graph model to simulate the cerebral blood flow in realistic vascular networks.
    Reichold J; Stampanoni M; Lena Keller A; Buck A; Jenny P; Weber B
    J Cereb Blood Flow Metab; 2009 Aug; 29(8):1429-43. PubMed ID: 19436317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microembolic flow disturbances in the cerebral microvasculature with an arcadal network: a numerical simulation.
    Niimi H; Komai Y; Yamaguchi S; Seki J
    Clin Hemorheol Microcirc; 2006; 34(1-2):247-55. PubMed ID: 16543644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex.
    Peyrounette M; Davit Y; Quintard M; Lorthois S
    PLoS One; 2018; 13(1):e0189474. PubMed ID: 29324784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks.
    Hyde ER; Michler C; Lee J; Cookson AN; Chabiniok R; Nordsletten DA; Smith NP
    Med Biol Eng Comput; 2013 May; 51(5):557-70. PubMed ID: 23345008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen delivery from the cerebral microvasculature to tissue is governed by a single time constant of approximately 6 seconds.
    Payne SJ; Lucas C
    Microcirculation; 2018 Feb; 25(2):. PubMed ID: 29106775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the microvascular tortuosity in tumor transport phenomena.
    Penta R; Ambrosi D
    J Theor Biol; 2015 Jan; 364():80-97. PubMed ID: 25218498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature.
    Sefidgar M; Soltani M; Raahemifar K; Sadeghi M; Bazmara H; Bazargan M; Mousavi Naeenian M
    Microvasc Res; 2015 May; 99():43-56. PubMed ID: 25724978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Evaluation of cerebral metabolism by multi-voxel proton magnetic resonance spectroscopy imaging in chronic unilateral internal carotid artery occlusion].
    Takayama H; Suga S; Kobayashi M; Sadanaga F; Hozumi A; Kanai Y; Okamura M; Mihara B
    No To Shinkei; 2000 Apr; 52(4):307-12. PubMed ID: 10793417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of vascular water transport in human subjects using time-resolved pulsed arterial spin labelling.
    Bibic A; Knutsson L; Schmidt A; Henningsson E; Månsson S; Abul-Kasim K; Åkeson J; Gunther M; Ståhlberg F; Wirestam R
    NMR Biomed; 2015 Aug; 28(8):1059-68. PubMed ID: 26147641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmural variation and anisotropy of microvascular flow conductivity in the rat myocardium.
    Smith AF; Shipley RJ; Lee J; Sands GB; LeGrice IJ; Smith NP
    Ann Biomed Eng; 2014 Sep; 42(9):1966-77. PubMed ID: 24866569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters.
    Lorthois S; Cassot F; Lauwers F
    Neuroimage; 2011 Feb; 54(4):2840-53. PubMed ID: 21047557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.