These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 25986559)
21. Characterization of the monomer-dimer equilibrium of recombinant histo-aspartic protease from Plasmodium falciparum. Xiao H; Briere LA; Dunn SD; Yada RY Mol Biochem Parasitol; 2010 Sep; 173(1):17-24. PubMed ID: 20435072 [TBL] [Abstract][Full Text] [Related]
22. Isolation and characterization of recombinant Drosophila Copia aspartic proteinase. Athauda SB; Yoshioka K; Shiba T; Takahashi K Biochem J; 2006 Nov; 399(3):535-42. PubMed ID: 16813567 [TBL] [Abstract][Full Text] [Related]
23. Recombinant plasmepsin 1 from the human malaria parasite plasmodium falciparum: enzymatic characterization, active site inhibitor design, and structural analysis. Liu P; Marzahn MR; Robbins AH; Gutiérrez-de-Terán H; Rodríguez D; McClung SH; Stevens SM; Yowell CA; Dame JB; McKenna R; Dunn BM Biochemistry; 2009 May; 48(19):4086-99. PubMed ID: 19271776 [TBL] [Abstract][Full Text] [Related]
24. Naturally-occurring and recombinant forms of the aspartic proteinases plasmepsins I and II from the human malaria parasite Plasmodium falciparum. Tyas L; Gluzman I; Moon RP; Rupp K; Westling J; Ridley RG; Kay J; Goldberg DE; Berry C FEBS Lett; 1999 Jul; 454(3):210-4. PubMed ID: 10431809 [TBL] [Abstract][Full Text] [Related]
25. Kinetic analysis of plasmepsins I and II aspartic proteases of the Plasmodium falciparum digestive vacuole. Luker KE; Francis SE; Gluzman IY; Goldberg DE Mol Biochem Parasitol; 1996 Jul; 79(1):71-8. PubMed ID: 8844673 [TBL] [Abstract][Full Text] [Related]
26. Shewasin A, an active pepsin homolog from the bacterium Shewanella amazonensis. Simões I; Faro R; Bur D; Kay J; Faro C FEBS J; 2011 Sep; 278(17):3177-86. PubMed ID: 21749650 [TBL] [Abstract][Full Text] [Related]
27. Novel uncomplexed and complexed structures of plasmepsin II, an aspartic protease from Plasmodium falciparum. Asojo OA; Gulnik SV; Afonina E; Yu B; Ellman JA; Haque TS; Silva AM J Mol Biol; 2003 Mar; 327(1):173-81. PubMed ID: 12614616 [TBL] [Abstract][Full Text] [Related]
28. The aspartic proteinase from the rodent parasite Plasmodium berghei as a potential model for plasmepsins from the human malaria parasite, Plasmodium falciparum. Humphreys MJ; Moon RP; Klinder A; Fowler SD; Rupp K; Bur D; Ridley RG; Berry C FEBS Lett; 1999 Dec; 463(1-2):43-8. PubMed ID: 10601635 [TBL] [Abstract][Full Text] [Related]
29. Picomolar Inhibition of Plasmepsin V, an Essential Malaria Protease, Achieved Exploiting the Prime Region. Gambini L; Rizzi L; Pedretti A; Taglialatela-Scafati O; Carucci M; Pancotti A; Galli C; Read M; Giurisato E; Romeo S; Russo I PLoS One; 2015; 10(11):e0142509. PubMed ID: 26566224 [TBL] [Abstract][Full Text] [Related]
30. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1. Lowther WT; Majer P; Dunn BM Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467 [TBL] [Abstract][Full Text] [Related]
31. Sequence, expression and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum. Dame JB; Reddy GR; Yowell CA; Dunn BM; Kay J; Berry C Mol Biochem Parasitol; 1994 Apr; 64(2):177-90. PubMed ID: 7935597 [TBL] [Abstract][Full Text] [Related]
32. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Russo I; Babbitt S; Muralidharan V; Butler T; Oksman A; Goldberg DE Nature; 2010 Feb; 463(7281):632-6. PubMed ID: 20130644 [TBL] [Abstract][Full Text] [Related]
33. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Silva AM; Lee AY; Gulnik SV; Maier P; Collins J; Bhat TN; Collins PJ; Cachau RE; Luker KE; Gluzman IY; Francis SE; Oksman A; Goldberg DE; Erickson JW Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10034-9. PubMed ID: 8816746 [TBL] [Abstract][Full Text] [Related]
34. Enzymatic Characterization of Recombinant Food Vacuole Plasmepsin 4 from the Rodent Malaria Parasite Plasmodium berghei. Liu P; Robbins AH; Marzahn MR; McClung SH; Yowell CA; Stevens SM; Dame JB; Dunn BM PLoS One; 2015; 10(10):e0141758. PubMed ID: 26510189 [TBL] [Abstract][Full Text] [Related]
35. PEXEL is a proteolytic maturation site for both exported and non-exported Fierro MA; Muheljic A; Sha J; Wohlschlegel JA; Beck JR bioRxiv; 2023 Jul; ():. PubMed ID: 37503245 [TBL] [Abstract][Full Text] [Related]
37. Functional chimera of porcine pepsin prosegment and Plasmodium falciparum plasmepsin II. Parr-Vasquez CL; Yada RY Protein Eng Des Sel; 2010 Jan; 23(1):19-26. PubMed ID: 19910416 [TBL] [Abstract][Full Text] [Related]
38. Unusual substrate specificity of a chimeric hypoxanthine-guanine phosphoribosyltransferase containing segments from the Plasmodium falciparum and human enzymes. Sujay Subbayya IN; Sukumaran S; Shivashankar K; Balaram H Biochem Biophys Res Commun; 2000 Jun; 272(2):596-602. PubMed ID: 10833458 [TBL] [Abstract][Full Text] [Related]
39. Bioprospection of Selected Plant Secondary Metabolites as Modulators of the Proteolytic Activity of Sulyman AO; Aje OO; Ajani EO; Abdulsalam RA; Balogun FO; Sabiu S Biomed Res Int; 2023; 2023():6229503. PubMed ID: 37388365 [TBL] [Abstract][Full Text] [Related]
40. Plasmodium falciparum, P. vivax, and P. malariae: a comparison of the active site properties of plasmepsins cloned and expressed from three different species of the malaria parasite. Westling J; Yowell CA; Majer P; Erickson JW; Dame JB; Dunn BM Exp Parasitol; 1997 Nov; 87(3):185-93. PubMed ID: 9371083 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]