These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25987355)

  • 21. Measuring specificity in multi-substrate/product systems as a tool to investigate selectivity in vivo.
    Kuo YM; Henry RA; Andrews AJ
    Biochim Biophys Acta; 2016 Jan; 1864(1):70-6. PubMed ID: 26321598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directed evolution of enzymes for applied biocatalysis.
    Turner NJ
    Trends Biotechnol; 2003 Nov; 21(11):474-8. PubMed ID: 14573359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering enzyme microenvironments for enhanced biocatalysis.
    Lancaster L; Abdallah W; Banta S; Wheeldon I
    Chem Soc Rev; 2018 Jul; 47(14):5177-5186. PubMed ID: 29796541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose.
    Scott GR; Schulte PM; Egginton S; Scott AL; Richards JG; Milsom WK
    Mol Biol Evol; 2011 Jan; 28(1):351-63. PubMed ID: 20685719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the levels of enzymatic substrate specificity: implications for the early evolution of metabolic pathways.
    Lazcano A; Díaz-Villagómez E; Mills T; Oró J
    Adv Space Res; 1995 Mar; 15(3):345-56. PubMed ID: 11539248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of promiscuity among drug metabolizing enzymes and drug transporters.
    Atkins WM
    FEBS J; 2020 Apr; 287(7):1306-1322. PubMed ID: 31663687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzyme promiscuity: engine of evolutionary innovation.
    Pandya C; Farelli JD; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2014 Oct; 289(44):30229-30236. PubMed ID: 25210039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of chemistry versus substrate binding in recruiting promiscuous enzyme functions.
    Khersonsky O; Malitsky S; Rogachev I; Tawfik DS
    Biochemistry; 2011 Apr; 50(13):2683-90. PubMed ID: 21332126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple alternative substrate kinetics.
    Anderson VE
    Biochim Biophys Acta; 2015 Nov; 1854(11):1729-36. PubMed ID: 26051088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways.
    Bornscheuer UT; Kazlauskas RJ
    Angew Chem Int Ed Engl; 2004 Nov; 43(45):6032-40. PubMed ID: 15523680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzyme promiscuity: evolutionary and mechanistic aspects.
    Khersonsky O; Roodveldt C; Tawfik DS
    Curr Opin Chem Biol; 2006 Oct; 10(5):498-508. PubMed ID: 16939713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insights about enzyme evolution from large scale studies of sequence and structure relationships.
    Brown SD; Babbitt PC
    J Biol Chem; 2014 Oct; 289(44):30221-30228. PubMed ID: 25210038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic promiscuity and heme-dependent redox regulation of H
    Banerjee R
    Curr Opin Chem Biol; 2017 Apr; 37():115-121. PubMed ID: 28282633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in engineering proteins for biocatalysis.
    Li Y; Cirino PC
    Biotechnol Bioeng; 2014 Jul; 111(7):1273-87. PubMed ID: 24802032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic and binding poly-reactivities shared by two unrelated proteins: The potential role of promiscuity in enzyme evolution.
    James LC; Tawfik DS
    Protein Sci; 2001 Dec; 10(12):2600-7. PubMed ID: 11714928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzyme promiscuity: mechanism and applications.
    Hult K; Berglund P
    Trends Biotechnol; 2007 May; 25(5):231-8. PubMed ID: 17379338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-substrate-activity space and quasi-species in enzyme evolution: Ohno's dilemma, promiscuity and functional orthogonality.
    Mannervik B; Runarsdottir A; Kurtovic S
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):740-4. PubMed ID: 19614586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.