BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25987500)

  • 1. Sensorineural hearing loss and ischemic injury: Development of animal models to assess vascular and oxidative effects.
    Olivetto E; Simoni E; Guaran V; Astolfi L; Martini A
    Hear Res; 2015 Sep; 327():58-68. PubMed ID: 25987500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caspase inhibitor facilitates recovery of hearing by protecting the cochlear lateral wall from acute cochlear mitochondrial dysfunction.
    Mizutari K; Matsunaga T; Kamiya K; Fujinami Y; Fujii M; Ogawa K
    J Neurosci Res; 2008 Jan; 86(1):215-22. PubMed ID: 17722114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protective effect of autophagy on ischemia/reperfusion-induced hearing loss: implications for sudden hearing loss.
    Yang H; Pang J; Xiong H; Sun Y; Lai L; Chen S; Ye Y; Yang Z; Zheng Y
    Neuroreport; 2017 Dec; 28(17):1157-1163. PubMed ID: 28953095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of peripherally developing hearing loss and tinnitus based on the role of hypoxia and ischemia.
    Mazurek B; Haupt H; Georgiewa P; Klapp BF; Reisshauer A
    Med Hypotheses; 2006; 67(4):892-9. PubMed ID: 16757123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TNF-α inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo.
    Arpornchayanon W; Canis M; Ihler F; Settevendemie C; Strieth S
    Int J Audiol; 2013 Aug; 52(8):545-52. PubMed ID: 23786392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
    Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R
    Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug-induced Defibrinogenation as New Treatment Approach of Acute Hearing Loss in an Animal Model for Inner Ear Vascular Impairment.
    Weiss BG; Bertlich M; Bettag SA; Desinger H; Ihler F; Canis M
    Otol Neurotol; 2017 Jun; 38(5):648-654. PubMed ID: 28369007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and functional alterations of the cochlea in apolipoprotein E gene deficient mice.
    Guo Y; Zhang C; Du X; Nair U; Yoo TJ
    Hear Res; 2005 Oct; 208(1-2):54-67. PubMed ID: 16051453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in guinea pig cochlea after transient cochlear ischemia.
    Lin CD; Wei IH; Tsai MH; Kao MC; Lai CH; Hsu CJ; Oshima T; Tsai MH
    Neuroreport; 2010 Oct; 21(15):968-75. PubMed ID: 20802354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.
    Kopke RD; Coleman JK; Liu J; Campbell KC; Riffenburgh RH
    Laryngoscope; 2002 Sep; 112(9):1515-32. PubMed ID: 12352659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the measurements of cochlear microcirculation and hearing function after loud noise.
    Arpornchayanon W; Canis M; Suckfuell M; Ihler F; Olzowy B; Strieth S
    Otolaryngol Head Neck Surg; 2011 Sep; 145(3):463-9. PubMed ID: 21636842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [An animal model for cochlear microcirculatory disorders by photochemically initiated thrombosis].
    Zhang X; Wang J
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1995; 30(5):285-8. PubMed ID: 8762509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Oxidative Stress in Sensorineural Hearing Loss.
    Teraoka M; Hato N; Inufusa H; You F
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disorders of cochlear blood flow.
    Nakashima T; Naganawa S; Sone M; Tominaga M; Hayashi H; Yamamoto H; Liu X; Nuttall AL
    Brain Res Brain Res Rev; 2003 Sep; 43(1):17-28. PubMed ID: 14499459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient cochlear ischemia causes delayed cell death in the organ of Corti: an experimental study in gerbils.
    Koga K; Hakuba N; Watanabe F; Shudou M; Nakagawa T; Gyo K
    J Comp Neurol; 2003 Feb; 456(2):105-11. PubMed ID: 12509868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
    Masuda M; Tanaka KF; Kanzaki S; Wakabayashi K; Oishi N; Suzuki T; Ikenaka K; Ogawa K
    Neurosci Res; 2008 Sep; 62(1):15-24. PubMed ID: 18602179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prostaglandin E receptor subtype EP4 agonist protects cochleae against noise-induced trauma.
    Hori R; Nakagawa T; Sugimoto Y; Sakamoto T; Yamamoto N; Hamaguchi K; Ito J
    Neuroscience; 2009 Jun; 160(4):813-9. PubMed ID: 19303430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic overstimulation activates 5'-AMP-activated protein kinase through a temporary decrease in ATP level in the cochlear spiral ligament prior to permanent hearing loss in mice.
    Nagashima R; Yamaguchi T; Kuramoto N; Ogita K
    Neurochem Int; 2011 Nov; 59(6):812-20. PubMed ID: 21906645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic overstimulation facilitates the expression of glutamate-cysteine ligase catalytic subunit probably through enhanced DNA binding of activator protein-1 and/or NF-kappaB in the murine cochlea.
    Nagashima R; Sugiyama C; Yoneyama M; Kuramoto N; Kawada K; Ogita K
    Neurochem Int; 2007; 51(2-4):209-15. PubMed ID: 17559975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Damage and Necroptosis in Aging Cochlea.
    Lyu AR; Kim TH; Park SJ; Shin SA; Jeong SH; Yu Y; Huh YH; Je AR; Park MJ; Park YH
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32260310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.