BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25988145)

  • 1. Differences in conformational dynamics within the Hsp90 chaperone family reveal mechanistic insights.
    Graf C; Lee CT; Eva Meier-Andrejszki L; Nguyen MT; Mayer MP
    Front Mol Biosci; 2014; 1():4. PubMed ID: 25988145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of the regulation of Hsp90 by the co-chaperone Sti1.
    Lee CT; Graf C; Mayer FJ; Richter SM; Mayer MP
    EMBO J; 2012 Mar; 31(6):1518-28. PubMed ID: 22354036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide-dependent interaction of Saccharomyces cerevisiae Hsp90 with the cochaperone proteins Sti1, Cpr6, and Sba1.
    Johnson JL; Halas A; Flom G
    Mol Cell Biol; 2007 Jan; 27(2):768-76. PubMed ID: 17101799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaperoning the chaperone: a role for the co-chaperone Cpr7 in modulating Hsp90 function in Saccharomyces cerevisiae.
    Zuehlke AD; Johnson JL
    Genetics; 2012 Jul; 191(3):805-14. PubMed ID: 22505624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Rotation of the N-terminal Domain of Hsp90 Is Important for Interaction with Some but Not All Client Proteins.
    Daturpalli S; Knieß RA; Lee CT; Mayer MP
    J Mol Biol; 2017 May; 429(9):1406-1423. PubMed ID: 28363677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle.
    Richter K; Walter S; Buchner J
    J Mol Biol; 2004 Oct; 342(5):1403-13. PubMed ID: 15364569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Hsp90 cochaperones Cpr6, Cpr7, and Cns1 interact with the intact ribosome.
    Tenge VR; Zuehlke AD; Shrestha N; Johnson JL
    Eukaryot Cell; 2015 Jan; 14(1):55-63. PubMed ID: 25380751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques.
    Giannoulis A; Feintuch A; Barak Y; Mazal H; Albeck S; Unger T; Yang F; Su XC; Goldfarb D
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):395-404. PubMed ID: 31862713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the conformational dynamics of the E3 ubiquitin ligase CHIP in complex with chaperones and E2 enzymes.
    Graf C; Stankiewicz M; Nikolay R; Mayer MP
    Biochemistry; 2010 Mar; 49(10):2121-9. PubMed ID: 20146531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational dynamics of the molecular chaperone Hsp90.
    Krukenberg KA; Street TO; Lavery LA; Agard DA
    Q Rev Biophys; 2011 May; 44(2):229-55. PubMed ID: 21414251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90.
    Vollmar L; Schimpf J; Hermann B; Hugel T
    Nat Commun; 2024 Jan; 15(1):569. PubMed ID: 38233436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling protein function by fine-tuning conformational flexibility.
    Schmid S; Hugel T
    Elife; 2020 Jul; 9():. PubMed ID: 32697684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and functional relationships of Hsp90.
    Prodromou C; Pearl LH
    Curr Cancer Drug Targets; 2003 Oct; 3(5):301-23. PubMed ID: 14529383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis.
    Verkhivker GM
    Biochim Biophys Acta Proteins Proteom; 2018 Aug; 1866(8):899-912. PubMed ID: 29684503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hsp90 Co-chaperones Sti1, Aha1, and P23 Regulate Adaptive Responses to Antifungal Azoles.
    Gu X; Xue W; Yin Y; Liu H; Li S; Sun X
    Front Microbiol; 2016; 7():1571. PubMed ID: 27761133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanism of the Hsp90 molecular chaperone machinery.
    Pearl LH; Prodromou C
    Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric Regulation Points Control the Conformational Dynamics of the Molecular Chaperone Hsp90.
    Rehn A; Moroni E; Zierer BK; Tippel F; Morra G; John C; Richter K; Colombo G; Buchner J
    J Mol Biol; 2016 Nov; 428(22):4559-4571. PubMed ID: 27663270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism of bacterial Hsp90 pH-dependent ATPase activity.
    Jin Y; Hoxie RS; Street TO
    Protein Sci; 2017 Jun; 26(6):1206-1213. PubMed ID: 28383119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hsp104 interacts with Hsp90 cochaperones in respiring yeast.
    Abbas-Terki T; Donzé O; Briand PA; Picard D
    Mol Cell Biol; 2001 Nov; 21(22):7569-75. PubMed ID: 11604493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.