BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25988226)

  • 61. Multisensory stimulation with or without saccades: fMRI evidence for crossmodal effects on sensory-specific cortices that reflect multisensory location-congruence rather than task-relevance.
    Macaluso E; Frith CD; Driver J
    Neuroimage; 2005 Jun; 26(2):414-25. PubMed ID: 15907299
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Integrating information from vision and touch: a neural network modeling study.
    Magosso E
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):598-612. PubMed ID: 20129867
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Visual, auditory and tactile stimuli compete for early sensory processing capacities within but not between senses.
    Porcu E; Keitel C; Müller MM
    Neuroimage; 2014 Aug; 97():224-35. PubMed ID: 24736186
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of motor intention on the perception of somatosensory events: a behavioural and functional magnetic resonance imaging study.
    Jackson SR; Parkinson A; Pears SL; Nam SH
    Q J Exp Psychol (Hove); 2011 May; 64(5):839-54. PubMed ID: 21213193
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multisensory interactions within human primary cortices revealed by BOLD dynamics.
    Martuzzi R; Murray MM; Michel CM; Thiran JP; Maeder PP; Clarke S; Meuli RA
    Cereb Cortex; 2007 Jul; 17(7):1672-9. PubMed ID: 16968869
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Visual-tactile processing in primary somatosensory cortex emerges before cross-modal experience.
    Bieler M; Sieben K; Schildt S; Röder B; Hanganu-Opatz IL
    Synapse; 2017 Jun; 71(6):. PubMed ID: 28105686
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Role for human posterior parietal cortex in visual processing of aversive objects in peripersonal space.
    Lloyd D; Morrison I; Roberts N
    J Neurophysiol; 2006 Jan; 95(1):205-14. PubMed ID: 16162829
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tactile Stimulation of the Face and the Production of Facial Expressions Activate Neurons in the Primate Amygdala.
    Mosher CP; Zimmerman PE; Fuglevand AJ; Gothard KM
    eNeuro; 2016; 3(5):. PubMed ID: 27752543
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The chronoarchitecture of the cerebral cortex.
    Bartels A; Zeki S
    Philos Trans R Soc Lond B Biol Sci; 2005 Apr; 360(1456):733-50. PubMed ID: 15937010
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cortical networks for encoding near and far space in the non-human primate.
    Cléry J; Guipponi O; Odouard S; Wardak C; Ben Hamed S
    Neuroimage; 2018 Aug; 176():164-178. PubMed ID: 29679734
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sensory Substitution and Multimodal Mental Imagery.
    Nanay B
    Perception; 2017 Sep; 46(9):1014-1026. PubMed ID: 28399717
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microcontroller based fibre-optic visual presentation system for multisensory neuroimaging.
    Kurniawan V; Klemen J; Chambers CD
    J Neurosci Methods; 2011 Oct; 202(1):28-37. PubMed ID: 21893095
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Integrating visual and tactile information in the perirhinal cortex.
    Holdstock JS; Hocking J; Notley P; Devlin JT; Price CJ
    Cereb Cortex; 2009 Dec; 19(12):2993-3000. PubMed ID: 19386635
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dynamic reconfiguration of macaque brain networks during natural vision.
    Ortiz-Rios M; Balezeau F; Haag M; Schmid MC; Kaiser M
    Neuroimage; 2021 Dec; 244():118615. PubMed ID: 34563680
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Within- and Cross-Modal Integration and Attention in the Autism Spectrum.
    Charbonneau G; Bertone A; Véronneau M; Girard S; Pelland M; Mottron L; Lepore F; Collignon O
    J Autism Dev Disord; 2020 Jan; 50(1):87-100. PubMed ID: 31538259
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Controlled emotional tactile stimulation during functional magnetic resonance imaging and electroencephalography.
    Kanayama N; Hara M; Watanabe J; Kitada R; Sakamoto M; Yamawaki S
    J Neurosci Methods; 2019 Nov; 327():108393. PubMed ID: 31415843
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Data-driven analysis of analogous brain networks in monkeys and humans during natural vision.
    Mantini D; Corbetta M; Romani GL; Orban GA; Vanduffel W
    Neuroimage; 2012 Nov; 63(3):1107-18. PubMed ID: 22992489
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A new patterned air-flow device to reveal the network for tactile motion coding using fMRI.
    Nazarian B; Caron-Guyon J; Anton JL; Sein J; Baurberg J; Catz N; Kavounoudias A
    J Neurosci Methods; 2022 Jan; 365():109397. PubMed ID: 34695454
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Tactile Quartet: Comparing Ambiguous Apparent Motion in Tactile and Visual Stimuli.
    Haladjian HH; Anstis S; Wexler M; Cavanagh P
    Perception; 2020 Jan; 49(1):61-80. PubMed ID: 31707914
    [No Abstract]   [Full Text] [Related]  

  • 80. The extraction of depth structure from shading and texture in the macaque brain.
    Nelissen K; Joly O; Durand JB; Todd JT; Vanduffel W; Orban GA
    PLoS One; 2009 Dec; 4(12):e8306. PubMed ID: 20011540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.