These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 25988244)
1. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. Popova AV; Rausch S; Hundertmark M; Gibon Y; Hincha DK Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1517-25. PubMed ID: 25988244 [TBL] [Abstract][Full Text] [Related]
2. Structural transitions in the intrinsically disordered plant dehydration stress protein LEA7 upon drying are modulated by the presence of membranes. Popova AV; Hundertmark M; Seckler R; Hincha DK Biochim Biophys Acta; 2011 Jul; 1808(7):1879-87. PubMed ID: 21443857 [TBL] [Abstract][Full Text] [Related]
3. Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes. Bremer A; Wolff M; Thalhammer A; Hincha DK FEBS J; 2017 Mar; 284(6):919-936. PubMed ID: 28109185 [TBL] [Abstract][Full Text] [Related]
4. Functional characterization of selected LEA proteins from Arabidopsis thaliana in yeast and in vitro. Dang NX; Popova AV; Hundertmark M; Hincha DK Planta; 2014 Aug; 240(2):325-36. PubMed ID: 24841476 [TBL] [Abstract][Full Text] [Related]
5. Influence of drying on the secondary structure of intrinsically disordered and globular proteins. Hundertmark M; Popova AV; Rausch S; Seckler R; Hincha DK Biochem Biophys Res Commun; 2012 Jan; 417(1):122-8. PubMed ID: 22155233 [TBL] [Abstract][Full Text] [Related]
6. Interaction of two intrinsically disordered plant stress proteins (COR15A and COR15B) with lipid membranes in the dry state. Thalhammer A; Hundertmark M; Popova AV; Seckler R; Hincha DK Biochim Biophys Acta; 2010 Sep; 1798(9):1812-20. PubMed ID: 20510170 [TBL] [Abstract][Full Text] [Related]
7. Stabilization of Dry Sucrose Glasses by Four LEA_4 Proteins from Hincha DK; Zuther E; Popova AV Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33919135 [TBL] [Abstract][Full Text] [Related]
8. Identification of a novel LEA protein involved in freezing tolerance in wheat. Sasaki K; Christov NK; Tsuda S; Imai R Plant Cell Physiol; 2014 Jan; 55(1):136-47. PubMed ID: 24265272 [TBL] [Abstract][Full Text] [Related]
9. MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins. Boucher V; Buitink J; Lin X; Boudet J; Hoekstra FA; Hundertmark M; Renard D; Leprince O Plant Cell Environ; 2010 Mar; 33(3):418-30. PubMed ID: 20002332 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulations and CD spectroscopy reveal hydration-induced unfolding of the intrinsically disordered LEA proteins COR15A and COR15B from Arabidopsis thaliana. Navarro-Retamal C; Bremer A; Alzate-Morales J; Caballero J; Hincha DK; González W; Thalhammer A Phys Chem Chem Phys; 2016 Oct; 18(37):25806-16. PubMed ID: 27255148 [TBL] [Abstract][Full Text] [Related]
11. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family. Liu Y; Yang M; Cheng H; Sun N; Liu S; Li S; Wang Y; Zheng Y; Uversky VN Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1291-1303. PubMed ID: 28867216 [TBL] [Abstract][Full Text] [Related]
12. An abundant LEA protein in the anhydrobiotic midge, PvLEA4, acts as a molecular shield by limiting growth of aggregating protein particles. Hatanaka R; Hagiwara-Komoda Y; Furuki T; Kanamori Y; Fujita M; Cornette R; Sakurai M; Okuda T; Kikawada T Insect Biochem Mol Biol; 2013 Nov; 43(11):1055-67. PubMed ID: 23978448 [TBL] [Abstract][Full Text] [Related]
13. Functional in vitro diversity of an intrinsically disordered plant protein during freeze-thawing is encoded by its structural plasticity. Hernández-Sánchez I; Rindfleisch T; Alpers J; Dulle M; Garvey CJ; Knox-Brown P; Miettinen MS; Nagy G; Pusterla JM; Rekas A; Shou K; Stadler AM; Walther D; Wolff M; Zuther E; Thalhammer A Protein Sci; 2024 May; 33(5):e4989. PubMed ID: 38659213 [TBL] [Abstract][Full Text] [Related]
14. Structural properties and enzyme stabilization function of the intrinsically disordered LEA_4 protein TdLEA3 from wheat. Koubaa S; Bremer A; Hincha DK; Brini F Sci Rep; 2019 Mar; 9(1):3720. PubMed ID: 30842512 [TBL] [Abstract][Full Text] [Related]
15. A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state. Tolleter D; Hincha DK; Macherel D Biochim Biophys Acta; 2010 Oct; 1798(10):1926-33. PubMed ID: 20637181 [TBL] [Abstract][Full Text] [Related]
16. Freezing and desiccation tolerance in the moss Physcomitrella patens: an in situ Fourier transform infrared spectroscopic study. Oldenhof H; Wolkers WF; Bowman JL; Tablin F; Crowe JH Biochim Biophys Acta; 2006 Aug; 1760(8):1226-34. PubMed ID: 16740364 [TBL] [Abstract][Full Text] [Related]
17. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Hincha DK; Thalhammer A Biochem Soc Trans; 2012 Oct; 40(5):1000-3. PubMed ID: 22988854 [TBL] [Abstract][Full Text] [Related]
18. Determining the Protective Activity of IDPs Under Partial Dehydration and Freeze-Thaw Conditions. Rendón-Luna DF; Romero-Pérez PS; Cuevas-Velazquez CL; Reyes JL; Covarrubias AA Methods Mol Biol; 2020; 2141():519-528. PubMed ID: 32696375 [TBL] [Abstract][Full Text] [Related]
19. Target enzymes are stabilized by AfrLEA6 and a gain of α-helix coincides with protection by a group 3 LEA protein during incremental drying. LeBlanc BM; Hand SC Biochim Biophys Acta Proteins Proteom; 2021 Jun; 1869(6):140642. PubMed ID: 33647452 [TBL] [Abstract][Full Text] [Related]
20. The intrinsically disordered late embryogenesis abundant protein LEA18 from Arabidopsis thaliana modulates membrane stability through binding and folding. Hundertmark M; Dimova R; Lengefeld J; Seckler R; Hincha DK Biochim Biophys Acta; 2011 Jan; 1808(1):446-53. PubMed ID: 20875393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]