These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25988667)

  • 1. Multistability in a class of stochastic delayed Hopfield neural networks.
    Chen WH; Luo S; Lu X
    Neural Netw; 2015 Aug; 68():52-61. PubMed ID: 25988667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact coexistence and locally asymptotic stability of multiple equilibria for fractional-order delayed Hopfield neural networks with Gaussian activation function.
    Nie X; Liu P; Liang J; Cao J
    Neural Netw; 2021 Oct; 142():690-700. PubMed ID: 34403909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistability and multiperiodicity in impulsive hybrid quaternion-valued neural networks with mixed delays.
    Popa CA; Kaslik E
    Neural Netw; 2018 Mar; 99():1-18. PubMed ID: 29306800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple μ-stability of neural networks with unbounded time-varying delays.
    Wang L; Chen T
    Neural Netw; 2014 May; 53():109-18. PubMed ID: 24583528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delay-dependent multistability in recurrent neural networks.
    Huang G; Cao J
    Neural Netw; 2010 Mar; 23(2):201-9. PubMed ID: 19913385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global exponential estimates of delayed stochastic neural networks with Markovian switching.
    Huang H; Huang T; Chen X
    Neural Netw; 2012 Dec; 36():136-45. PubMed ID: 23124276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays.
    Huang H; Du Q; Kang X
    ISA Trans; 2013 Nov; 52(6):759-67. PubMed ID: 23953509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistability of second-order competitive neural networks with nondecreasing saturated activation functions.
    Nie X; Cao J
    IEEE Trans Neural Netw; 2011 Nov; 22(11):1694-708. PubMed ID: 21900074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistability of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays.
    Nie X; Zheng WX; Cao J
    Neural Netw; 2015 Nov; 71():27-36. PubMed ID: 26277610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistability analysis of a general class of recurrent neural networks with non-monotonic activation functions and time-varying delays.
    Liu P; Zeng Z; Wang J
    Neural Netw; 2016 Jul; 79():117-27. PubMed ID: 27136665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability analysis for discrete-time stochastic memristive neural networks with both leakage and probabilistic delays.
    Liu H; Wang Z; Shen B; Huang T; Alsaadi FE
    Neural Netw; 2018 Jun; 102():1-9. PubMed ID: 29510262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays.
    Cao J; Wang J
    Neural Netw; 2004 Apr; 17(3):379-90. PubMed ID: 15037355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Mittag-Leffler stability of fractional-order competitive neural networks with Gaussian activation functions.
    Liu P; Nie X; Liang J; Cao J
    Neural Netw; 2018 Dec; 108():452-465. PubMed ID: 30312961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexistence and local μ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays.
    Nie X; Zheng WX; Cao J
    Neural Netw; 2016 Dec; 84():172-180. PubMed ID: 27794268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexistence and local stability of multiple equilibrium points for fractional-order state-dependent switched competitive neural networks with time-varying delays.
    Wu Z; Nie X; Cao B
    Neural Netw; 2023 Mar; 160():132-147. PubMed ID: 36640489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mean square delay dependent-probability-distribution stability analysis of neutral type stochastic neural networks.
    Muralisankar S; Manivannan A; Balasubramaniam P
    ISA Trans; 2015 Sep; 58():11-9. PubMed ID: 25862099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel exponential stability criteria of high-order neural networks with time-varying delays.
    Zheng CD; Zhang H; Wang Z
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):486-96. PubMed ID: 20716505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistability and Instability of Neural Networks With Discontinuous Nonmonotonic Piecewise Linear Activation Functions.
    Nie X; Zheng WX
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2901-13. PubMed ID: 26277000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistability and instability analysis of recurrent neural networks with time-varying delays.
    Zhang F; Zeng Z
    Neural Netw; 2018 Jan; 97():116-126. PubMed ID: 29096200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistability of complex-valued neural networks with discontinuous activation functions.
    Liang J; Gong W; Huang T
    Neural Netw; 2016 Dec; 84():125-142. PubMed ID: 27718391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.