These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25988708)

  • 21. A parallel test of the SCRAM-CAM transdermal monitors ensuring reliability.
    van Egmond K; Wright CJC; Livingston M; Kuntsche E
    Drug Alcohol Rev; 2021 Nov; 40(7):1122-1130. PubMed ID: 34235793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of transdermal alcohol concentration and self-reported alcohol consumption in people with alcohol dependence attending community alcohol treatment services.
    Brobbin E; Deluca P; Coulton S; Parkin S; Drummond C
    Drug Alcohol Depend; 2024 Mar; 256():111122. PubMed ID: 38367536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validating transdermal alcohol biosensors: a meta-analysis of associations between blood/breath-based measures and transdermal alcohol sensor output.
    Yu J; Fairbairn CE; Gurrieri L; Caumiant EP
    Addiction; 2022 Nov; 117(11):2805-2815. PubMed ID: 35603913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low alcohol alternatives: a promising strategy for reducing alcohol related harm.
    Segal DS; Stockwell T
    Int J Drug Policy; 2009 Mar; 20(2):183-7. PubMed ID: 18675542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictors of detection of alcohol use episodes using a transdermal alcohol sensor.
    Barnett NP; Meade EB; Glynn TR
    Exp Clin Psychopharmacol; 2014 Feb; 22(1):86-96. PubMed ID: 24490713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The influence of six alcoholic beverages on ethanol concentration in the blood and breath].
    Hey H; Haslund-Vinding P
    Ugeskr Laeger; 2006 Jan; 168(5):470-5. PubMed ID: 16472436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Baseline protective behavioral strategy use predicts more moderate transdermal alcohol concentration dynamics and fewer negative consequences of drinking in young adults' natural settings.
    Russell MA; Smyth JM; Turrisi R; Rodriguez GC
    Psychol Addict Behav; 2024 May; 38(3):347-359. PubMed ID: 37384452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acceptability and validity of using the BACtrack skyn wrist-worn transdermal alcohol concentration sensor to capture alcohol use across 28 days under naturalistic conditions - A pilot study.
    Courtney JB; Russell MA; Conroy DE
    Alcohol; 2023 May; 108():30-43. PubMed ID: 36473634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transdermal sensor features correlate with ecological momentary assessment drinking reports and predict alcohol-related consequences in young adults' natural settings.
    Russell MA; Turrisi RJ; Smyth JM
    Alcohol Clin Exp Res; 2022 Jan; 46(1):100-113. PubMed ID: 35066894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative determination of caffeine and alcohol in energy drinks and the potential to produce positive transdermal alcohol concentrations in human subjects.
    Ayala J; Simons K; Kerrigan S
    J Anal Toxicol; 2009; 33(1):27-33. PubMed ID: 19161666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of low alcohol beers on the blood alcohol concentration.
    Neuteboom W; Vis AA
    Blutalkohol; 1991 Nov; 28(6):393-6. PubMed ID: 1768401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using drinking data and pharmacokinetic modeling to calibrate transport model and blind deconvolution based data analysis software for transdermal alcohol biosensors.
    Dai Z; Rosen IG; Wang C; Barnett N; Luczak SE
    Math Biosci Eng; 2016 Oct; 13(5):911-934. PubMed ID: 27775390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Obtaining continuous BrAC/BAC estimates in the field: A hybrid system integrating transdermal alcohol biosensor, Intellidrink smartphone app, and BrAC Estimator software tools.
    Luczak SE; Hawkins AL; Dai Z; Wichmann R; Wang C; Rosen IG
    Addict Behav; 2018 Aug; 83():48-55. PubMed ID: 29233567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating BrAC from transdermal alcohol concentration data using the BrAC estimator software program.
    Luczak SE; Rosen IG
    Alcohol Clin Exp Res; 2014 Aug; 38(8):2243-52. PubMed ID: 25156615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Discreet Wearable IoT Sensor for Continuous Transdermal Alcohol Monitoring - Challenges and Opportunities.
    Li B; Downen RS; Dong Q; Tran N; LeSaux M; Meltzer AC; Li Z
    IEEE Sens J; 2021 Feb; 21(4):5322-5330. PubMed ID: 33746626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signal processing and machine learning with transdermal alcohol concentration to predict natural environment alcohol consumption.
    Didier NA; King AC; Polley EC; Fridberg DJ
    Exp Clin Psychopharmacol; 2024 Apr; 32(2):245-254. PubMed ID: 37824232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying alcohol consumption: Self-report, transdermal assessment, and prediction of dependence symptoms.
    Simons JS; Wills TA; Emery NN; Marks RM
    Addict Behav; 2015 Nov; 50():205-12. PubMed ID: 26160523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of stomach content on the breath alcohol concentration-transdermal alcohol concentration relationship.
    Saldich EB; Wang C; Rosen IG; Bartroff J; Luczak SE
    Drug Alcohol Rev; 2021 Nov; 40(7):1131-1142. PubMed ID: 33713037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Examining alcohol and alcohol-free versions of a Simulated Drinking Game Procedure.
    Silvestri MM; Cameron JM; Borsari B; Correia CJ
    J Stud Alcohol Drugs; 2013 Mar; 74(2):329-36. PubMed ID: 23384381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential effect of alcohol content in energy drinks on breath alcohol testing.
    Lutmer B; Zurfluh C; Long C
    J Anal Toxicol; 2009 Apr; 33(3):167-9. PubMed ID: 19371466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.