BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25988744)

  • 1. Catalytic mechanism of cofactor-free dioxygenases and how they circumvent spin-forbidden oxygenation of their substrates.
    Hernández-Ortega A; Quesne MG; Bui S; Heyes DJ; Steiner RA; Scrutton NS; de Visser SP
    J Am Chem Soc; 2015 Jun; 137(23):7474-87. PubMed ID: 25988744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the proton-transfer step in the cofactor-free (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase: effect of the basicity of an active site His residue.
    Hernandez-Ortega A; Quesne MG; Bui S; Heuts DP; Steiner RA; Heyes DJ; de Visser SP; Scrutton NS
    J Biol Chem; 2014 Mar; 289(12):8620-32. PubMed ID: 24482238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold.
    Steiner RA; Janssen HJ; Roversi P; Oakley AJ; Fetzner S
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):657-62. PubMed ID: 20080731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-assisted O2 activation in a cofactor-independent dioxygenase.
    Thierbach S; Bui N; Zapp J; Chhabra SR; Kappl R; Fetzner S
    Chem Biol; 2014 Feb; 21(2):217-25. PubMed ID: 24388758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cofactor-Free Dioxygenases-Catalyzed Reaction Pathway via Proton-Coupled Electron Transfer.
    Zhang QY; Li X; Luo J; Li X; Song J; Wei D
    J Phys Chem B; 2023 Jan; 127(1):95-103. PubMed ID: 36525303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2,4-dioxygenases catalyzing N-heterocyclic-ring cleavage and formation of carbon monoxide. Purification and some properties of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter sp. Rü61a and comparison with 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase from Pseudomonas putida 33/1.
    Bauer I; Max N; Fetzner S; Lingens F
    Eur J Biochem; 1996 Sep; 240(3):576-83. PubMed ID: 8856057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dioxygenases without requirement for cofactors: identification of amino acid residues involved in substrate binding and catalysis, and testing for rate-limiting steps in the reaction of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase.
    Frerichs-Deeken U; Fetzner S
    Curr Microbiol; 2005 Nov; 51(5):344-52. PubMed ID: 16187153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locally enhanced sampling study of dioxygen diffusion pathways in homoprotocatechuate 2,3-dioxygenase.
    Xu L; Liu X; Zhao W; Wang X
    J Phys Chem B; 2009 Oct; 113(41):13596-603. PubMed ID: 19761222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refining the reaction mechanism of O
    Silva PJ
    PeerJ; 2016; 4():e2805. PubMed ID: 28028471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad.
    Bassan A; Borowski T; Siegbahn PE
    Dalton Trans; 2004 Oct; (20):3153-62. PubMed ID: 15483690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional and evolutionary relationships among diverse oxygenases.
    Harayama S; Kok M; Neidle EL
    Annu Rev Microbiol; 1992; 46():565-601. PubMed ID: 1444267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Substrate and Oxygen Activation in Salicylate Dioxygenase Revealed by QM/MM Simulations.
    Roy S; Kästner J
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):1168-72. PubMed ID: 26596241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis.
    Widboom PF; Fielding EN; Liu Y; Bruner SD
    Nature; 2007 May; 447(7142):342-5. PubMed ID: 17507985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes.
    Kumar D; Thiel W; de Visser SP
    J Am Chem Soc; 2011 Mar; 133(11):3869-82. PubMed ID: 21344861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction coordinate analysis for beta-diketone cleavage by the non-heme Fe2+-dependent dioxygenase Dke1.
    Straganz GD; Nidetzky B
    J Am Chem Soc; 2005 Sep; 127(35):12306-14. PubMed ID: 16131208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase.
    Matera I; Ferraroni M; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Mol Biol; 2008 Jul; 380(5):856-68. PubMed ID: 18572191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase.
    Li K; Fielding EN; Condurso HL; Bruner SD
    Acta Crystallogr D Struct Biol; 2017 Jul; 73(Pt 7):573-580. PubMed ID: 28695857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.