BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25988774)

  • 1. Quality of red blood cells washed using a second wash sequence on an automated cell processor.
    Hansen AL; Turner TR; Kurach JD; Acker JP
    Transfusion; 2015 Oct; 55(10):2415-21. PubMed ID: 25988774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality of red blood cells washed using an automated cell processor with and without irradiation.
    Hansen AL; Turner TR; Yi QL; Acker JP
    Transfusion; 2014 Jun; 54(6):1585-94. PubMed ID: 24224608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up to 21-day banked red blood cells collected by apheresis and stored for 14 days after automated wash at different times of storage.
    Grabmer C; Holmberg J; Popovsky M; Amann E; Schönitzer D; Falaize S; Hanske H; Pages E; Nussbaumer W
    Vox Sang; 2006 Jan; 90(1):40-4. PubMed ID: 16359354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introduction of a closed-system cell processor for red blood cell washing: postimplementation monitoring of safety and efficacy.
    Acker JP; Hansen AL; Yi QL; Sondi N; Cserti-Gazdewich C; Pendergrast J; Hannach B
    Transfusion; 2016 Jan; 56(1):49-57. PubMed ID: 26444143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quality of red blood cells washed using the ACP 215 cell processor: assessment of optimal pre- and postwash storage times and conditions.
    Hansen A; Yi QL; Acker JP
    Transfusion; 2013 Aug; 53(8):1772-9. PubMed ID: 23521180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buffy coat (top/bottom)- and whole-blood filtration (top/top)-produced red cell concentrates differ in size of extracellular vesicles.
    Bicalho B; Pereira AS; Acker JP
    Vox Sang; 2015 Oct; 109(3):214-20. PubMed ID: 25900231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of automated and manual methods for washing red blood cells.
    Proffitt S; Curnow E; Brown C; Bashir S; Cardigan R
    Transfusion; 2018 Sep; 58(9):2208-2216. PubMed ID: 30204951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument.
    Valeri CR; Ragno G; Van Houten P; Rose L; Rose M; Egozy Y; Popovsky MA
    Transfusion; 2005 Oct; 45(10):1621-7. PubMed ID: 16181213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Randomized study of washing 40- to 42-day-stored red blood cells.
    Bennett-Guerrero E; Kirby BS; Zhu H; Herman AE; Bandarenko N; McMahon TJ
    Transfusion; 2014 Oct; 54(10):2544-52. PubMed ID: 24735194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro comparison of two different methods of cell washing.
    Smith T; Riley W; Fitzgerald D
    Perfusion; 2013 Jan; 28(1):34-7. PubMed ID: 22936688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centrifugation-free washing: A novel approach for removing immunoglobulin A from stored red blood cells.
    Vörös E; Piety NZ; Strachan BC; Lu M; Shevkoplyas SS
    Am J Hematol; 2018 Aug; 93(4):518-526. PubMed ID: 29285804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular potassium concentrations in red blood cell suspensions after irradiation and washing.
    Weiskopf RB; Schnapp S; Rouine-Rapp K; Bostrom A; Toy P
    Transfusion; 2005 Aug; 45(8):1295-301. PubMed ID: 16078915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro quality of red blood cells (RBCs) collected by multicomponent apheresis compared to manually collected RBCs during 49 days of storage.
    Picker SM; Radojska SM; Gathof BS
    Transfusion; 2007 Apr; 47(4):687-96. PubMed ID: 17381628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of stored red blood cell washing techniques for priming extracorporeal circuits.
    Sasaki J; Tirotta C; Lim H; Kubes K; Salvaggio J; Hannan R; Burke R; Ojito J
    Perfusion; 2018 Mar; 33(2):130-135. PubMed ID: 28925857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quality control of buffy coat removed red cell concentrates--a Croatian experience.
    Vuk T; Očić T; Patko MS; Jukić I
    Transfus Med; 2014 Dec; 24(6):385-91. PubMed ID: 25469715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The in vitro quality of red blood cells frozen with 40 percent (wt/vol) glycerol at -80 degrees C for 14 years, deglycerolized with the Haemonetics ACP 215, and stored at 4 degrees C in additive solution-1 or additive solution-3 for up to 3 weeks.
    Valeri CR; Srey R; Tilahun D; Ragno G
    Transfusion; 2004 Jul; 44(7):990-5. PubMed ID: 15225238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytokine generation in whole blood, leukocyte-depleted and temporarily warmed red blood cell concentrates.
    Weisbach V; Wanke C; Zingsem J; Zimmermann R; Eckstein R
    Vox Sang; 1999; 76(2):100-6. PubMed ID: 10085526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of leukocyte filters for erythrocyte concentration].
    Hiller J; Lubitz B; Dominka T; Kühnl P
    Beitr Infusionsther Transfusionsmed; 1994; 32():20-2. PubMed ID: 9480086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quality monitoring program for red blood cell components: in vitro quality indicators before and after implementation of semiautomated processing.
    Acker JP; Hansen AL; Kurach JD; Turner TR; Croteau I; Jenkins C
    Transfusion; 2014 Oct; 54(10):2534-43. PubMed ID: 24805193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new preparation method for red blood cells for intrauterine transfusion enabling reduction of donor exposure.
    Bontekoe IJ; Scharenberg J; Schonewille H; Zwaginga JJ; Brand A; van der Meer PF; de Korte D
    Transfusion; 2015 Jul; 55(7):1693-9. PubMed ID: 25656421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.