BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25988774)

  • 21. Cryopreserving and deglycerolizing sickle cell trait red blood cell components using an automated cell-processing system.
    Ackley RJ; Lee-Stroka AH; Bryant BJ; Stroncek DF; Byrne KM
    Immunohematology; 2008; 24(3):107-12. PubMed ID: 19845078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collection of red blood cell units by apheresis.
    Moog R
    Transfus Apher Sci; 2013 Apr; 48(2):141-3. PubMed ID: 23507240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Centrifugation after irradiation of red blood cells does not accelerate haemolysis.
    Weiss DR; Goehring J; Weisbach V; Strasser EF; Ringwald J; Zimmermann R; Eckstein R
    Clin Lab; 2011; 57(7-8):523-6. PubMed ID: 21888016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Blood Transfusion in a Patient with Severe Anemia and Immunoglobulin A Deficiency during an Emergency Total Hysterectomy on a Holiday].
    Hayasi T; Kayashima K; Okura D; Kawasaki T
    Masui; 2016 Oct; 65(10):1051-1053. PubMed ID: 30358287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of biological response modifiers in the supernatant of washed paediatric red blood cells.
    Loh YS; Tan S; Kwok M; Stark MJ; Marks DC
    Vox Sang; 2016 Nov; 111(4):365-373. PubMed ID: 27864978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathogen reduced red blood cells as an alternative to irradiated and washed components with potential for up to 42 days storage.
    Larsson L; Ohlsson S; Andersson TN; Watz E; Larsson S; Sandgren P; Uhlin M
    Blood Transfus; 2024 Mar; 22(2):130-139. PubMed ID: 37458715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tangential flow filtration facilitated washing of human red blood cells: A proof-of-concept study.
    Lu S; Allyn M; Weigand M; Chalmers JJ; Palmer AF
    Vox Sang; 2022 Jun; 117(6):803-811. PubMed ID: 35262216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated processing of whole blood units: operational value and in vitro quality of final blood components.
    Jurado M; Algora M; Garcia-Sanchez F; Vico S; Rodriguez E; Perez S; Barbolla L
    Blood Transfus; 2012 Jan; 10(1):63-71. PubMed ID: 22044958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of cryopreservation on a rare McLeod donor red blood cell concentrate.
    Turner TR; Clarke G; Denomme GA; Skeate R; Acker JP
    Immunohematology; 2021 Jun; 37(2):78-83. PubMed ID: 34170642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transfusion reactions: a comparative observational study of blood components produced before and after implementation of semiautomated production from whole blood.
    Semple E; Bowes-Schmidt A; Yi QL; Shimla S; Devine DV
    Transfusion; 2012 Dec; 52(12):2683-91. PubMed ID: 22738255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quality analysis of blood components obtained by automated buffy-coat layer removal with a top & bottom system (Optipress (R)II).
    Hurtado C; Bonanad S; Soler Mf; Mirabet V; Blasco I; Planelles Mf; De Miguel A
    Haematologica; 2000 Apr; 85(4):390-5. PubMed ID: 10756365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo survival of apheresis RBCs, frozen with 40-percent (wt/vol) glycerol, deglycerolized in the ACP 215, and stored at 4 degrees C in AS-3 for up to 21 days.
    Valeri CR; Ragno G; Pivacek L; O'Neill EM
    Transfusion; 2001 Jul; 41(7):928-32. PubMed ID: 11452162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated blood component collection with the MCS 3p cell separator: evaluation of three protocols for buffy coat-poor and white cell-reduced packed red cells and plasma.
    Zeiler TA; Kretschmer V
    Transfusion; 1997 Aug; 37(8):791-7. PubMed ID: 9280322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated collection of double red blood cell units with a variable-volume separation chamber.
    Aubuchon JP; Dumont LJ; Herschel L; Roger J; Beddard RL; Taylor HL; Whitley PH; Sawyer SL; Graminske S; Martinson K; Dora R; Heldke S; Adamson J; Rose LE
    Transfusion; 2008 Jan; 48(1):147-52. PubMed ID: 17894787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of red blood cell concentrates and plasma units from whole blood held overnight using a hollow-fibre separation system.
    Johnson L; Kwok M; Marks DC
    Transfus Med; 2015 Feb; 25(1):13-9. PubMed ID: 25808374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Meta-analysis of randomized controlled trials investigating the risk of postoperative infection in association with white blood cell-containing allogeneic blood transfusion: the effects of the type of transfused red blood cell product and surgical setting.
    Vamvakas EC
    Transfus Med Rev; 2002 Oct; 16(4):304-14. PubMed ID: 12415516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Haemolysis and sublethal injury of RBCs after routine blood bank manipulations.
    Harm SK; Raval JS; Cramer J; Waters JH; Yazer MH
    Transfus Med; 2012 Jun; 22(3):181-5. PubMed ID: 22188550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Analysis of the quality of hemoderivatives obtained using a buffy-coat extraction system with a top-and-bottom technique (Optipress II)].
    Hurtado C; Bonanad S; Soler MA; Mirabet V; Blasco I; Planelles MD; de Miguel A
    Sangre (Barc); 1999 Oct; 44(5):319-26. PubMed ID: 10618907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Washing of stored red blood cells by an autotransfusion device before transfusion.
    de Vroege R; Wildevuur WR; Muradin JA; Graves D; van Oeveren W
    Vox Sang; 2007 Feb; 92(2):130-5. PubMed ID: 17298575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemolysis of red blood cells during processing and storage.
    Gkoumassi E; Dijkstra-Tiekstra MJ; Hoentjen D; de Wildt-Eggen J
    Transfusion; 2012 Mar; 52(3):489-92. PubMed ID: 21827508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.