These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 25988802)
1. Rapid and Specific Aqueous-Phase Detection of Nitroaromatic Explosives with Inherent Porphyrin Recognition Sites in Metal-Organic Frameworks. Yang J; Wang Z; Hu K; Li Y; Feng J; Shi J; Gu J ACS Appl Mater Interfaces; 2015 Jun; 7(22):11956-64. PubMed ID: 25988802 [TBL] [Abstract][Full Text] [Related]
2. Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection. Abuzalat O; Wong D; Park SS; Kim S Nanoscale; 2020 Jul; 12(25):13523-13530. PubMed ID: 32555819 [TBL] [Abstract][Full Text] [Related]
3. Multicomponent assembly of fluorescent-tag functionalized ligands in metal-organic frameworks for sensing explosives. Gole B; Bar AK; Mukherjee PS Chemistry; 2014 Oct; 20(41):13321-36. PubMed ID: 25164426 [TBL] [Abstract][Full Text] [Related]
4. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives. Ma Y; Wang L Talanta; 2014 Mar; 120():100-5. PubMed ID: 24468348 [TBL] [Abstract][Full Text] [Related]
5. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection. Ma Y; Li H; Peng S; Wang L Anal Chem; 2012 Oct; 84(19):8415-21. PubMed ID: 22946839 [TBL] [Abstract][Full Text] [Related]
6. Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and electron deficiency. Gole B; Bar AK; Mukherjee PS Chemistry; 2014 Feb; 20(8):2276-91. PubMed ID: 24459002 [TBL] [Abstract][Full Text] [Related]
7. One-pot doping platinum porphyrin recognition centers in Zr-based MOFs for ratiometric luminescent monitoring of nitric oxide in living cells. Ye Y; Liu H; Li Y; Zhuang Q; Liu P; Gu J Talanta; 2019 Aug; 200():472-479. PubMed ID: 31036211 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. Yang X; Wang J; Su D; Xia Q; Chai F; Wang C; Qu F Dalton Trans; 2014 Jul; 43(26):10057-63. PubMed ID: 24871909 [TBL] [Abstract][Full Text] [Related]
9. Instant visual detection of picogram levels of trinitrotoluene by using luminescent metal-organic framework gel-coated filter paper. Lee JH; Kang S; Lee JY; Jaworski J; Jung JH Chemistry; 2013 Dec; 19(49):16665-71. PubMed ID: 24203392 [TBL] [Abstract][Full Text] [Related]
10. Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal-organic framework with a pendant recognition site. Nagarkar SS; Desai AV; Samanta P; Ghosh SK Dalton Trans; 2015 Sep; 44(34):15175-80. PubMed ID: 25797881 [TBL] [Abstract][Full Text] [Related]
11. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives. Kovalev IS; Taniya OS; Slovesnova NV; Kim GA; Santra S; Zyryanov GV; Kopchuk DS; Majee A; Charushin VN; Chupakhin ON Chem Asian J; 2016 Mar; 11(5):775-81. PubMed ID: 26757403 [TBL] [Abstract][Full Text] [Related]
12. Folic Acid as a Bimodal Optical Probe for the Detection of TNT. Vijila NS; Athira M; Madanan Anju S; Aswathy AO; Jayakrishna J; Sreekumar M; Anjali Devi JS; Anjitha B; George S J Fluoresc; 2021 Jul; 31(4):933-940. PubMed ID: 33782809 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation. Ma Y; Huang S; Wang L Talanta; 2013 Nov; 116():535-40. PubMed ID: 24148441 [TBL] [Abstract][Full Text] [Related]
14. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Stringer RC; Gangopadhyay S; Grant SA Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483 [TBL] [Abstract][Full Text] [Related]
15. π-Electron rich small molecule sensors for the recognition of nitroaromatics. Shanmugaraju S; Mukherjee PS Chem Commun (Camb); 2015 Nov; 51(89):16014-32. PubMed ID: 26463400 [TBL] [Abstract][Full Text] [Related]
16. Rapid visual detection of nitroaromatic explosives using a luminescent europium-organic framework material. He N; Gao M; Shen D; Li H; Han Z; Zhao P Forensic Sci Int; 2019 Apr; 297():1-7. PubMed ID: 30739882 [TBL] [Abstract][Full Text] [Related]
18. Imparting Multifunctionality in Zr-MOFs Using the One-Pot Mixed-Linker Strategy: The Effect of Linker Environment and Enhanced Pollutant Removal. Gao Y; Suh MJ; Kim JH; Yu G ACS Appl Mater Interfaces; 2022 Jun; 14(21):24351-24362. PubMed ID: 35587119 [TBL] [Abstract][Full Text] [Related]
19. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution. Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223 [TBL] [Abstract][Full Text] [Related]
20. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity. Che Y; Gross DE; Huang H; Yang D; Yang X; Discekici E; Xue Z; Zhao H; Moore JS; Zang L J Am Chem Soc; 2012 Mar; 134(10):4978-82. PubMed ID: 22339204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]