These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 25989022)

  • 1. Deconstructing the complexity of regulating common properties in different cell types: lessons from the delilah gene.
    Nachman A; Halachmi N; Matia N; Manzur D; Salzberg A
    Dev Biol; 2015 Jul; 403(2):180-91. PubMed ID: 25989022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial regulation of cell adhesion in the Drosophila wing is mediated by Delilah, a potent activator of βPS integrin expression.
    Egoz-Matia N; Nachman A; Halachmi N; Toder M; Klein Y; Salzberg A
    Dev Biol; 2011 Mar; 351(1):99-109. PubMed ID: 21215259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-minded, Dmef2, Pointed, and Su(H) act on identified regulatory sequences of the roughest gene in Drosophila melanogaster.
    Apitz H; Strünkelnberg M; de Couet HG; Fischbach KF
    Dev Genes Evol; 2005 Sep; 215(9):460-69. PubMed ID: 16096801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct regulation of atonal in a visual organ of Drosophila: Organ-specific enhancer and lack of autoregulation in the larval eye.
    Zhou Q; Yu L; Friedrich M; Pignoni F
    Dev Biol; 2017 Jan; 421(1):67-76. PubMed ID: 27693434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redeployment of a conserved gene regulatory network during Aedes aegypti development.
    Suryamohan K; Hanson C; Andrews E; Sinha S; Scheel MD; Halfon MS
    Dev Biol; 2016 Aug; 416(2):402-13. PubMed ID: 27341759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rab11 is required for cell adhesion, maintenance of cell shape and actin-cytoskeleton organization during Drosophila wing development.
    Bhuin T; Roy JK
    Int J Dev Biol; 2011; 55(3):269-79. PubMed ID: 21710435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila.
    Koshikawa S; Giorgianni MW; Vaccaro K; Kassner VA; Yoder JH; Werner T; Carroll SB
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7524-9. PubMed ID: 26034272
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Avetisyan A; Glatt Y; Cohen M; Timerman Y; Aspis N; Nachman A; Halachmi N; Preger-Ben Noon E; Salzberg A
    Elife; 2021 Dec; 10():. PubMed ID: 34964712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of a Developmental Compartment Requires Interactions between Three Synergistic Cis-regulatory Modules.
    Bieli D; Kanca O; Requena D; Hamaratoglu F; Gohl D; Schedl P; Affolter M; Slattery M; Müller M; Estella C
    PLoS Genet; 2015 Oct; 11(10):e1005376. PubMed ID: 26468882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The UBX-regulated network in the haltere imaginal disc of D. melanogaster.
    Hersh BM; Nelson CE; Stoll SJ; Norton JE; Albert TJ; Carroll SB
    Dev Biol; 2007 Feb; 302(2):717-27. PubMed ID: 17174297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila mef2 expression during mesoderm development is controlled by a complex array of cis-acting regulatory modules.
    Nguyen HT; Xu X
    Dev Biol; 1998 Dec; 204(2):550-66. PubMed ID: 9882489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental regulation of the Drosophila Tropomyosin I (TmI) gene is controlled by a muscle activator enhancer region that contains multiple cis-elements and binding sites for multiple proteins.
    Lin SC; Storti RV
    Dev Genet; 1997; 20(4):297-306. PubMed ID: 9254904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of a genetic regulatory network by a selector gene.
    Guss KA; Nelson CE; Hudson A; Kraus ME; Carroll SB
    Science; 2001 May; 292(5519):1164-7. PubMed ID: 11303087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch.
    Zhou D; Xue J; Lai JC; Schork NJ; White KP; Haddad GG
    PLoS Genet; 2008 Oct; 4(10):e1000221. PubMed ID: 18927626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancer evolutionary co-option through shared chromatin accessibility input.
    Xin Y; Le Poul Y; Ling L; Museridze M; Mühling B; Jaenichen R; Osipova E; Gompel N
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20636-20644. PubMed ID: 32778581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cellular memory module conveys epigenetic inheritance of hedgehog expression during Drosophila wing imaginal disc development.
    Maurange C; Paro R
    Genes Dev; 2002 Oct; 16(20):2672-83. PubMed ID: 12381666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression and morphogenesis during the deposition of Drosophila wing cuticle.
    Adler PN
    Fly (Austin); 2017 Jul; 11(3):194-199. PubMed ID: 28631994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of regulatory modules mediating specific expression of the roughest gene in Drosophila melanogaster.
    Apitz H; Kambacheld M; Höhne M; Ramos RG; Straube A; Fischbach KF
    Dev Genes Evol; 2004 Sep; 214(9):453-9. PubMed ID: 15278452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.
    Wang H; Wang K; Xiao G; Ma J; Wang B; Shen S; Fu X; Zou G; Zou B
    Sci Rep; 2015 Oct; 5():14965. PubMed ID: 26446369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila.
    Halder G; Polaczyk P; Kraus ME; Hudson A; Kim J; Laughon A; Carroll S
    Genes Dev; 1998 Dec; 12(24):3900-9. PubMed ID: 9869643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.