These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 25989347)

  • 1. Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels.
    Liu C; Xue C; Chen X; Shan L; Tian Y; Hu G
    Anal Chem; 2015 Jun; 87(12):6041-8. PubMed ID: 25989347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid.
    Nam J; Namgung B; Lim CT; Bae JE; Leo HL; Cho KS; Kim S
    J Chromatogr A; 2015 Aug; 1406():244-50. PubMed ID: 26122857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.
    Yang S; Kim JY; Lee SJ; Lee SS; Kim JM
    Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency extraction of target particles in viscoelastic contraction-expansion microchannels.
    Wu B; Liu S; Jiang D; Tang W
    Electrophoresis; 2024 Jul; 45(13-14):1233-1242. PubMed ID: 38161241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW; Yoo JY
    Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow.
    Kim JY; Ahn SW; Lee SS; Kim JM
    Lab Chip; 2012 Aug; 12(16):2807-14. PubMed ID: 22776909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell stretching measurement utilizing viscoelastic particle focusing.
    Cha S; Shin T; Lee SS; Shim W; Lee G; Lee SJ; Kim Y; Kim JM
    Anal Chem; 2012 Dec; 84(23):10471-7. PubMed ID: 23163397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel.
    Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J
    Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device.
    Del Giudice F; Madadi H; Villone MM; D'Avino G; Cusano AM; Vecchione R; Ventre M; Maffettone PL; Netti PA
    Lab Chip; 2015 Apr; 15(8):1912-22. PubMed ID: 25732596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel.
    Del Giudice F; Romeo G; D'Avino G; Greco F; Netti PA; Maffettone PL
    Lab Chip; 2013 Nov; 13(21):4263-71. PubMed ID: 24056525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation.
    Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J
    Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading.
    Wu Z; Hjort K; Wicher G; Fex Svenningsen A
    Biomed Microdevices; 2008 Oct; 10(5):631-8. PubMed ID: 18461460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.
    Zeming KK; Salafi T; Chen CH; Zhang Y
    Sci Rep; 2016 Mar; 6():22934. PubMed ID: 26961061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.