These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 25989348)

  • 21. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications.
    Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH
    J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering.
    Ren K; He C; Xiao C; Li G; Chen X
    Biomaterials; 2015 May; 51():238-249. PubMed ID: 25771014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations.
    Chu S; Maples MM; Bryant SJ
    Acta Biomater; 2020 Jun; 109():37-50. PubMed ID: 32268243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemically Triggered Hydrogel Transformations through Covalent Adaptable Networks and Applications in Cell Culture.
    Chang L; Wang C; Han S; Sun X; Xu F
    ACS Macro Lett; 2021 Jul; 10(7):901-906. PubMed ID: 35549189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review.
    Princen K; Marien N; Guedens W; Graulus GJ; Adriaensens P
    Chembiochem; 2023 Oct; 24(20):e202300149. PubMed ID: 37220343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering.
    Hu M; Yang J; Xu J
    Drug Deliv; 2021 Dec; 28(1):607-619. PubMed ID: 33739203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomacromolecules for Tissue Engineering: Emerging Biomimetic Strategies.
    Guo JL; Kim YS; Mikos AG
    Biomacromolecules; 2019 Aug; 20(8):2904-2912. PubMed ID: 31282658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Injectable cell-laden hydrogels fabricated with cellulose and chitosan nanofibers for bioprinted liver tissues.
    Zhang Z; Li Q; Hatakeyama M; Kitaoka T
    Biomed Mater; 2023 May; 18(4):. PubMed ID: 37168003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface tension-assisted additive manufacturing.
    Ragelle H; Tibbitt MW; Wu SY; Castillo MA; Cheng GZ; Gangadharan SP; Anderson DG; Cima MJ; Langer R
    Nat Commun; 2018 Mar; 9(1):1184. PubMed ID: 29567939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and Properties of Double-Crosslinked Hydroxyapatite Composite Hydrogels.
    Zhao B; Zhao M; Li L; Sun S; Yu H; Cheng Y; Yang Y; Fan Y; Sun Y
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS
    Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators.
    Hull SM; Lou J; Lindsay CD; Navarro RS; Cai B; Brunel LG; Westerfield AD; Xia Y; Heilshorn SC
    Sci Adv; 2023 Mar; 9(13):eade7880. PubMed ID: 37000873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradable hydrogels composed of oxime crosslinked poly(ethylene glycol), hyaluronic acid and collagen: a tunable platform for soft tissue engineering.
    Hardy JG; Lin P; Schmidt CE
    J Biomater Sci Polym Ed; 2015; 26(3):143-61. PubMed ID: 25555089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alginate Hydrogels: A Tool for 3D Cell Encapsulation, Tissue Engineering, and Biofabrication.
    Bonani W; Cagol N; Maniglio D
    Adv Exp Med Biol; 2020; 1250():49-61. PubMed ID: 32601937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic freedom: substrate stress relaxation stimulates cell responses.
    Dey K; Agnelli S; Sartore L
    Biomater Sci; 2019 Feb; 7(3):836-842. PubMed ID: 30574966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair.
    Lacko CS; Singh I; Wall MA; Garcia AR; Porvasnik SL; Rinaldi C; Schmidt CE
    J Neural Eng; 2020 Feb; 17(1):016057. PubMed ID: 31577998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.