BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

918 related articles for article (PubMed ID: 25989463)

  • 21. All-nanowire based Li-ion full cells using homologous Mn2O3 and LiMn2O4.
    Wang Y; Wang Y; Jia D; Peng Z; Xia Y; Zheng G
    Nano Lett; 2014 Feb; 14(2):1080-4. PubMed ID: 24475905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites.
    Chen Z; Augustyn V; Jia X; Xiao Q; Dunn B; Lu Y
    ACS Nano; 2012 May; 6(5):4319-27. PubMed ID: 22471878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Octaphyrin(1.0.1.0.1.0.1.0) as an Organic Electrode for Li and Na Rechargeable Batteries.
    Hwang J; Matsumoto K; Hagiwara R; Liu SY; Shin JY
    Small Methods; 2022 Mar; 6(3):e2101181. PubMed ID: 35312229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution-grown germanium nanowire anodes for lithium-ion batteries.
    Chockla AM; Klavetter KC; Mullins CB; Korgel BA
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4658-64. PubMed ID: 22894797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior.
    de la Llave E; Borgel V; Park KJ; Hwang JY; Sun YK; Hartmann P; Chesneau FF; Aurbach D
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1867-75. PubMed ID: 26642926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Langmuir-Blodgett Nanowire Devices for In Situ Probing of Zinc-Ion Batteries.
    Liu Q; Hao Z; Liao X; Pan X; Li S; Xu L; Mai L
    Small; 2019 Jul; 15(30):e1902141. PubMed ID: 31169975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.
    Medenbach L; Adelhelm P
    Top Curr Chem (Cham); 2017 Sep; 375(5):81. PubMed ID: 28963656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Negative electrodes for Na-ion batteries.
    Dahbi M; Yabuuchi N; Kubota K; Tokiwa K; Komaba S
    Phys Chem Chem Phys; 2014 Aug; 16(29):15007-28. PubMed ID: 24894102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A first-principles study on Si
    He Y; Lu X; Kim DY
    RSC Adv; 2018 May; 8(36):20228-20233. PubMed ID: 35541672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.
    Doeff MM; Chen G; Cabana J; Richardson TJ; Mehta A; Shirpour M; Duncan H; Kim C; Kam KC; Conry T
    J Vis Exp; 2013 Nov; (81):e50594. PubMed ID: 24300777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Overview on the Development of Electrochemical Capacitors and Batteries - part II.
    Martins VL; Neves HR; Monje IE; Leite MM; Oliveira PFM; Antoniassi RM; Chauque S; Morais WG; Melo EC; Obana TT; Souza BL; Torresi RM
    An Acad Bras Cienc; 2020; 92(2):e20200800. PubMed ID: 32638868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible control of the magnetization of spinel ferrites based electrodes by lithium-ion migration.
    Wei G; Wei L; Wang D; Chen Y; Tian Y; Yan S; Mei L; Jiao J
    Sci Rep; 2017 Oct; 7(1):12554. PubMed ID: 28970542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ionic liquids and derived materials for lithium and sodium batteries.
    Yang Q; Zhang Z; Sun XG; Hu YS; Xing H; Dai S
    Chem Soc Rev; 2018 Mar; 47(6):2020-2064. PubMed ID: 29393942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchically structured materials for lithium batteries.
    Xiao J; Zheng J; Li X; Shao Y; Zhang JG
    Nanotechnology; 2013 Oct; 24(42):424004. PubMed ID: 24067410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.