These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25989881)

  • 21. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction.
    Li D; Huang Y; Sharma N; Chen Z; Jia D; Guo Z
    Phys Chem Chem Phys; 2012 Mar; 14(10):3634-9. PubMed ID: 22311165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Encapsulating micro-nano Si/SiO(x) into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries.
    Wang J; Zhou M; Tan G; Chen S; Wu F; Lu J; Amine K
    Nanoscale; 2015 May; 7(17):8023-34. PubMed ID: 25865463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode.
    Xiao Y; Wang X; Wang W; Zhao D; Cao M
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2051-8. PubMed ID: 24410006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.
    Usui H; Yoshioka S; Wasada K; Shimizu M; Sakaguchi H
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6567-73. PubMed ID: 25757057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries.
    Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L
    ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A FeCl₂-graphite sandwich composite with Cl doping in graphite layers: a new anode material for high-performance Li-ion batteries.
    Wang L; Guo C; Zhu Y; Zhou J; Fan L; Qian Y
    Nanoscale; 2014 Nov; 6(23):14174-9. PubMed ID: 25338171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage.
    Liu Y; Liu P; Wu D; Huang Y; Tang Y; Su Y; Zhang F; Feng X
    Chemistry; 2015 Mar; 21(14):5617-22. PubMed ID: 25694249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Operando Analysis of Gas Evolution in TiNb
    Parikh D; Geng L; Lyu H; Jafta CJ; Liu H; Meyer HM; Chen J; Sun XG; Dai S; Li J
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55145-55155. PubMed ID: 34780156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional Fe2 N@C microspheres grown on reduced graphite oxide for lithium-ion batteries and the Li storage mechanism.
    Yu P; Wang L; Sun F; Zhao D; Tian C; Zhao L; Liu X; Wang J; Fu H
    Chemistry; 2015 Feb; 21(8):3249-56. PubMed ID: 25640982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ternary Sn-Ti-O based nanostructures as anodes for lithium ion batteries.
    Wang H; Huang H; Niu C; Rogach AL
    Small; 2015 Mar; 11(12):1364-83. PubMed ID: 25504364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries.
    Hua W; Zhang J; Zheng Z; Liu W; Peng X; Guo XD; Zhong B; Wang YJ; Wang X
    Dalton Trans; 2014 Oct; 43(39):14824-32. PubMed ID: 25162932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries.
    Yang CP; Yin YX; Ye H; Jiang KC; Zhang J; Guo YG
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8789-95. PubMed ID: 24764111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zr4+ doping in Li4Ti5O12 anode for lithium-ion batteries: open Li+ diffusion paths through structural imperfection.
    Kim JG; Park MS; Hwang SM; Heo YU; Liao T; Sun Z; Park JH; Kim KJ; Jeong G; Kim YJ; Kim JH; Dou SX
    ChemSusChem; 2014 May; 7(5):1451-7. PubMed ID: 24700792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance.
    Zhou F; Xin S; Liang HW; Song LT; Yu SH
    Angew Chem Int Ed Engl; 2014 Oct; 53(43):11552-6. PubMed ID: 25213751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries.
    Ma X; Ning G; Qi C; Xu C; Gao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14415-22. PubMed ID: 25105538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance.
    Fu L; Tang K; Song K; van Aken PA; Yu Y; Maier J
    Nanoscale; 2014; 6(3):1384-9. PubMed ID: 24306060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-dimensional V2O5 sheet network as electrode for lithium-ion batteries.
    Xu Y; Dunwell M; Fei L; Fu E; Lin Q; Patterson B; Yuan B; Deng S; Andersen P; Luo H; Zou G
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20408-13. PubMed ID: 25369296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.