These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 25989935)

  • 1. In vitro apatite formation on nano-crystalline titania layer aligned parallel to Ti6Al4V alloy substrates with sub-millimeter gap.
    Hayakawa S; Matsumoto Y; Uetsuki K; Shirosaki Y; Osaka A
    J Mater Sci Mater Med; 2015 Jun; 26(6):190. PubMed ID: 25989935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid phase deposited titania coating to enable in vitro apatite formation on Ti6Al4V alloy.
    Hayakawa S; Masuda Y; Okamoto K; Shirosaki Y; Kato K; Osaka A
    J Mater Sci Mater Med; 2014 Feb; 25(2):375-81. PubMed ID: 24165799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid.
    Wang XX; Yan W; Hayakawa S; Tsuru K; Osaka A
    Biomaterials; 2003 Nov; 24(25):4631-7. PubMed ID: 12951006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation and growth of apatite on an anatase layer irradiated with UV light under different environmental conditions.
    Uetsuki K; Nakai S; Shirosaki Y; Hayakawa S; Osaka A
    J Biomed Mater Res A; 2013 Mar; 101(3):712-9. PubMed ID: 22941932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of in vitro apatite deposition on heat-, H(2)O(2)-, and NaOH-treated titanium surfaces.
    Wang XX; Hayakawa S; Tsuru K; Osaka A
    J Biomed Mater Res; 2001 Feb; 54(2):172-8. PubMed ID: 11093176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium phosphate crystallization on titania in a flowing Kokubo solution.
    Hayakawa S; Tsuru K; Uetsuki K; Akasaka K; Shirosaki Y; Osaka A
    J Mater Sci Mater Med; 2015 Aug; 26(8):222. PubMed ID: 26264385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study.
    Wang CX; Wang M; Zhou X
    Biomaterials; 2003 Aug; 24(18):3069-77. PubMed ID: 12895579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic deposition of apatite coating on surface-modified NiTi alloy.
    Gu YW; Tay BY; Lim CS; Yong MS
    Biomaterials; 2005 Dec; 26(34):6916-23. PubMed ID: 15941583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation mechanism of biomedical apatite coatings on porous titania layer.
    Huang P; Xu K; Han Y
    J Mater Sci Mater Med; 2007 Mar; 18(3):457-63. PubMed ID: 17334696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.
    Sepahvandi A; Moztarzadeh F; Mozafari M; Ghaffari M; Raee N
    Colloids Surf B Biointerfaces; 2011 Sep; 86(2):390-6. PubMed ID: 21592746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants.
    Barrere F; Snel MM; van Blitterswijk CA; de Groot K; Layrolle P
    Biomaterials; 2004 Jun; 25(14):2901-10. PubMed ID: 14962569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature deposition of rutile film on biomaterials substrates and its ability to induce apatite deposition in vitro.
    Wu JM; Liu JF; Hayakawa S; Tsuru K; Osaka A
    J Mater Sci Mater Med; 2007 Aug; 18(8):1529-36. PubMed ID: 17410409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study.
    Yang Z; Si S; Zeng X; Zhang C; Dai H
    Acta Biomater; 2008 May; 4(3):560-8. PubMed ID: 18053780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid.
    Takadama H; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2001 Dec; 57(3):441-8. PubMed ID: 11523039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of bioactive titanium metal via anodic oxidation treatment.
    Yang B; Uchida M; Kim HM; Zhang X; Kokubo T
    Biomaterials; 2004 Mar; 25(6):1003-10. PubMed ID: 14615165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid.
    Kim HM; Himeno T; Kawashita M; Lee JH; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Dec; 67(4):1305-9. PubMed ID: 14624517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants.
    Radtke A; Grodzicka M; Ehlert M; Muzioł TM; Szkodo M; Bartmański M; Piszczek P
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid.
    Chen X; Nouri A; Li Y; Lin J; Hodgson PD; Wen C
    Biotechnol Bioeng; 2008 Oct; 101(2):378-87. PubMed ID: 18454499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].
    Tian Z; Zhang Y; Wang L; Nan K
    Nan Fang Yi Ke Da Xue Xue Bao; 2013 Oct; 33(10):1554-6. PubMed ID: 24144769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of oxygen-diffused titanium for biomedical applications.
    Yamamoto O; Alvarez K; Kikuchi T; Fukuda M
    Acta Biomater; 2009 Nov; 5(9):3605-15. PubMed ID: 19523543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.