These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25990192)

  • 41. The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation.
    Siriwardana NS; Lamb RS
    Int J Dev Biol; 2012; 56(4):207-21. PubMed ID: 22451042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Uncovering genetic and molecular interactions among floral meristem identity genes in Arabidopsis thaliana.
    Grandi V; Gregis V; Kater MM
    Plant J; 2012 Mar; 69(5):881-93. PubMed ID: 22040363
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Patterning the female side of Arabidopsis: the importance of hormones.
    Balanzá V; Navarrete M; Trigueros M; Ferrándiz C
    J Exp Bot; 2006; 57(13):3457-69. PubMed ID: 17023565
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis.
    Chen MK; Hsu WH; Lee PF; Thiruvengadam M; Chen HI; Yang CH
    Plant J; 2011 Oct; 68(1):168-85. PubMed ID: 21689171
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic network modelling to understand flowering transition and floral patterning.
    Davila-Velderrain J; Martinez-Garcia JC; Alvarez-Buylla ER
    J Exp Bot; 2016 Apr; 67(9):2565-72. PubMed ID: 27025221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The LEPIDIUM-LIKE gene determines stem cell activity during formation of petals and stamens in Arabidopsis thaliana flowers.
    Penin AA; Logacheva MD
    Dokl Biol Sci; 2007; 412():56-7. PubMed ID: 17515044
    [No Abstract]   [Full Text] [Related]  

  • 47. Deciphering the Arabidopsis floral transition process by integrating a protein-protein interaction network and gene expression data.
    He F; Zhou Y; Zhang Z
    Plant Physiol; 2010 Aug; 153(4):1492-505. PubMed ID: 20530214
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control.
    Refahi Y; Zardilis A; Michelin G; Wightman R; Leggio B; Legrand J; Faure E; Vachez L; Armezzani A; Risson AE; Zhao F; Das P; Prunet N; Meyerowitz EM; Godin C; Malandain G; Jönsson H; Traas J
    Dev Cell; 2021 Feb; 56(4):540-556.e8. PubMed ID: 33621494
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis.
    Mendoza L; Thieffry D; Alvarez-Buylla ER
    Bioinformatics; 1999; 15(7-8):593-606. PubMed ID: 10487867
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Live Confocal Imaging of Developing Arabidopsis Flowers.
    Prunet N
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28448004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates.
    Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER
    BMC Syst Biol; 2015 May; 9():20. PubMed ID: 25967891
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptomic and lipidomic profiles of glycerolipids during Arabidopsis flower development.
    Nakamura Y; Teo NZ; Shui G; Chua CH; Cheong WF; Parameswaran S; Koizumi R; Ohta H; Wenk MR; Ito T
    New Phytol; 2014 Jul; 203(1):310-22. PubMed ID: 24684726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial dynamics of floral organ formation.
    Cortes-Poza Y; Padilla-Longoria P; Alvarez-Buylla E
    J Theor Biol; 2018 Oct; 454():30-40. PubMed ID: 29857084
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis.
    Yan W; Chen D; Schumacher J; Durantini D; Engelhorn J; Chen M; Carles CC; Kaufmann K
    Nat Commun; 2019 Apr; 10(1):1705. PubMed ID: 30979870
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach.
    Xie W; Huang J; Liu Y; Rao J; Luo D; He M
    Front Plant Sci; 2015; 6():829. PubMed ID: 26528302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy.
    Valuchova S; Mikulkova P; Pecinkova J; Klimova J; Krumnikl M; Bainar P; Heckmann S; Tomancak P; Riha K
    Elife; 2020 Feb; 9():. PubMed ID: 32041682
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of Arabidopsis floral transcriptome: detection of new florally expressed genes and expansion of Brassicaceae-specific gene families.
    Zhang L; Wang L; Yang Y; Cui J; Chang F; Wang Y; Ma H
    Front Plant Sci; 2014; 5():802. PubMed ID: 25653662
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A model comparison study of the flowering time regulatory network in Arabidopsis.
    Wang CC; Chang PC; Ng KL; Chang CM; Sheu PC; Tsai JJ
    BMC Syst Biol; 2014 Feb; 8():15. PubMed ID: 24513114
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-nucleus RNA sequencing of plant tissues using a nanowell-based system.
    Sunaga-Franze DY; Muino JM; Braeuning C; Xu X; Zong M; Smaczniak C; Yan W; Fischer C; Vidal R; Kliem M; Kaufmann K; Sauer S
    Plant J; 2021 Nov; 108(3):859-869. PubMed ID: 34390289
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurement of plant growth in view of an integrative analysis of regulatory networks.
    Wuyts N; Dhondt S; Inzé D
    Curr Opin Plant Biol; 2015 Jun; 25():90-7. PubMed ID: 26002069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.