These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25990197)

  • 1. Co-electrodeposition of RuO2-MnO2 nanowires and the contribution of RuO2 to the capacitance increase.
    Gui Z; Gillette E; Duay J; Hu J; Kim N; Lee SB
    Phys Chem Chem Phys; 2015 Jun; 17(23):15173-80. PubMed ID: 25990197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-exchange induced heterogeneous RuO2-conductive polymer nanowires.
    Gui Z; Duay J; Hu J; Lee SB
    Phys Chem Chem Phys; 2014 Jun; 16(24):12332-40. PubMed ID: 24824847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.
    Liu R; Duay J; Lee SB
    ACS Nano; 2010 Jul; 4(7):4299-307. PubMed ID: 20590128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors.
    Sun Z; Firdoz S; Yap EY; Li L; Lu X
    Nanoscale; 2013 May; 5(10):4379-87. PubMed ID: 23571645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes.
    Mu B; Zhang W; Shao S; Wang A
    Phys Chem Chem Phys; 2014 May; 16(17):7872-80. PubMed ID: 24643731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Synthesis of Metal-Ion-Doped Manganese Dioxide for Enhanced Electrochemical Performance.
    Peng R; Wu N; Zheng Y; Huang Y; Luo Y; Yu P; Zhuang L
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8474-80. PubMed ID: 26996352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Pseudocapacitive Performance of MnO2 Nanowires on Recyclable Electrodes.
    Han ZJ; Bo Z; Seo DH; Pineda S; Wang Y; Yang HY; Ostrikov KK
    ChemSusChem; 2016 May; 9(9):1020-6. PubMed ID: 27059434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Electrodes for High-Performance Electrochemical Capacitors: Multi-Layer MnO2/Pt and Composite MnO2/Pt on Carbon Nanofibres.
    Lee YJ; An GH; Ahn HJ
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8931-6. PubMed ID: 26726621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures for supercapacitors.
    Wang HY; Xiao FX; Yu L; Liu B; Lou XW
    Small; 2014 Aug; 10(15):3181-6. PubMed ID: 24711308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of Ni based metal-organic frameworks wrapped MnO
    Han Y; Yu Y; Zhang L; Huang L; Zhai J; Dong S
    Talanta; 2018 Aug; 186():154-161. PubMed ID: 29784343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mn oxide-silver composite nanowires for improved thermal stability, SERS and electrical conductivity.
    Pradhan M; Sinha AK; Pal T
    Chemistry; 2014 Jul; 20(29):9111-9. PubMed ID: 24891154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Specific Capacitance of the Electrodeposited MnO
    Zhang M; Dai X; Zhang C; Fuan Y; Yang D; Li J
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced electrochemical performance of hydrous RuO2/mesoporous carbon nanocomposites via nitrogen doping.
    Zhang C; Xie Y; Zhao M; Pentecost AE; Ling Z; Wang J; Long D; Ling L; Qiao W
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9751-9. PubMed ID: 24847730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors.
    Lee SW; Kim J; Chen S; Hammond PT; Shao-Horn Y
    ACS Nano; 2010 Jul; 4(7):3889-96. PubMed ID: 20552996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability.
    Wang Z; Li Z; Feng J; Yan S; Luo W; Liu J; Yu T; Zou Z
    Phys Chem Chem Phys; 2014 May; 16(18):8521-8. PubMed ID: 24668150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Electrochemical Properties of Polyaniline Composite Electrodes Prepared by In-Situ Polymerization in Hydrous Ruthenium Oxide Dispersed Aqueous Solution.
    Kim J; Jung Y; Kim S
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1443-7. PubMed ID: 26353669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors.
    Song Y; Feng DY; Liu TY; Li Y; Liu XX
    Nanoscale; 2015 Feb; 7(8):3581-7. PubMed ID: 25631619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.