These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25990471)

  • 1. Manufacturing a nanowire-based sensing system via flow-guided assembly in a microchannel array template.
    Chen J; Zu Y; Kumar Rajagopalan K; Wang S
    Nanotechnology; 2015 Jun; 26(23):235603. PubMed ID: 25990471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-assisted Dielectrophoresis: A Low Cost Method for the Fabrication of High Performance Solution-processable Nanowire Devices.
    Snashall K; Constantinou M; Shkunov M
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conducting polymer nanowire arrays for high performance supercapacitors.
    Wang K; Wu H; Meng Y; Wei Z
    Small; 2014 Jan; 10(1):14-31. PubMed ID: 23959804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale controllable patterning growth of aligned organic nanowires through evaporation-induced self-assembly.
    Bao R; Zhang C; Wang Z; Zhang X; Ou X; Lee CS; Jie J; Zhang X
    Chemistry; 2012 Jan; 18(3):975-80. PubMed ID: 22170498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly and hierarchical patterning of aligned organic nanowire arrays by solvent evaporation on substrates with patterned wettability.
    Bao RR; Zhang CY; Zhang XJ; Ou XM; Lee CS; Jie JS; Zhang XH
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5757-62. PubMed ID: 23742204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical synthesis of highly ordered nanowires with a rectangular cross section using an in-plane nanochannel array.
    Sergelius P; Moreno JM; Rahimi W; Waleczek M; Zierold R; Görlitz D; Nielsch K
    Nanotechnology; 2014 Dec; 25(50):504002. PubMed ID: 25426643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates.
    Zhang W; Yang S
    Acc Chem Res; 2009 Oct; 42(10):1617-27. PubMed ID: 19645439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control.
    Wu S; Huang K; Shi E; Xu W; Fang Y; Yang Y; Cao A
    ACS Nano; 2014 Apr; 8(4):3522-30. PubMed ID: 24660781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.
    Long YZ; Yu M; Sun B; Gu CZ; Fan Z
    Chem Soc Rev; 2012 Jun; 41(12):4560-80. PubMed ID: 22573265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel fabrication of an SnO(2) nanowire gas sensor with high sensitivity.
    Choi YJ; Hwang IS; Park JG; Choi KJ; Park JH; Lee JH
    Nanotechnology; 2008 Mar; 19(9):095508. PubMed ID: 21817675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the highly efficient room temperature ammonia gas sensing properties of a luminescent ZnO nanowire array prepared via an AAO-assisted template route.
    Kumar N; Srivastava AK; Nath R; Gupta BK; Varma GD
    Dalton Trans; 2014 Apr; 43(15):5713-20. PubMed ID: 24557454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of polymer nanowires via maskless O2 plasma etching.
    Du K; Wathuthanthri I; Liu Y; Kang YT; Choi CH
    Nanotechnology; 2014 Apr; 25(16):165301. PubMed ID: 24670779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a nickel nanowire mesh electrode suspended on polymer substrate.
    El Mel AA; Gautron E; Angleraud B; Granier A; Xu W; Choi CH; Briston KJ; Inkson BJ; Tessier PY
    Nanotechnology; 2012 Jul; 23(27):275603. PubMed ID: 22706790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stirring-assisted assembly of nanowires at liquid-solid interfaces.
    Li WZ; Wei W; Chen JY; He JX; Xue SN; Zhang J; Liu X; Li X; Fu Y; Jiao YH; Zhang K; Liu F; Han EH
    Nanotechnology; 2013 Mar; 24(10):105302. PubMed ID: 23416634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires.
    Yao J; Yan H; Lieber CM
    Nat Nanotechnol; 2013 May; 8(5):329-35. PubMed ID: 23603986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable positioning and alignment of silver nanowires by tunable hydrodynamic focusing.
    Liu M; Chen Y; Guo Q; Li R; Sun X; Yang J
    Nanotechnology; 2011 Mar; 22(12):125302. PubMed ID: 21317493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realization of Nanolene: A Planar Array of Perfectly Aligned, Air-Suspended Nanowires.
    Lee JS; Choi KW; Yoo JY; Jo MS; Yoon JB
    Small; 2020 Apr; 16(13):e1906845. PubMed ID: 32072747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications.
    Koka A; Zhou Z; Tang H; Sodano HA
    Nanotechnology; 2014 Sep; 25(37):375603. PubMed ID: 25148612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-soldering of magnetically aligned three-dimensional nanowire networks.
    Gao F; Gu Z
    Nanotechnology; 2010 Mar; 21(11):115604. PubMed ID: 20179331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.