These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25990501)

  • 21. [Fetal programming and the etiology of osteoporosis].
    Pieńkowski W; Wolski H; Drews K; Seremak-Mrozikiewicz A
    Ginekol Pol; 2015 Aug; 86(8):622-5. PubMed ID: 26492712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preemptive Epigenetic Medicine Based on Fetal Programming.
    Kubota T
    Adv Exp Med Biol; 2018; 1012():85-95. PubMed ID: 29956197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human embryonic stem cells as a model for nutritional programming: an evaluation.
    Allegrucci C; Denning CN; Burridge P; Steele W; Sinclair KD; Young LE
    Reprod Toxicol; 2005; 20(3):353-67. PubMed ID: 15975761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adverse effects of nutritional programming during prenatal and early postnatal life, some aspects of regulation and potential prevention and treatments.
    Guilloteau P; Zabielski R; Hammon HM; Metges CC
    J Physiol Pharmacol; 2009 Oct; 60 Suppl 3():17-35. PubMed ID: 19996479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incorporating epigenetic mechanisms to advance fetal programming theories.
    Conradt E; Adkins DE; Crowell SE; Raby KL; Diamond LM; Ellis B
    Dev Psychopathol; 2018 Aug; 30(3):807-824. PubMed ID: 30068415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fetal Growth and Intrauterine Epigenetic Programming of Obesity and Cardiometabolic Disease.
    Harary D; Akinyemi A; Charron MJ; Fuloria M
    Neoreviews; 2022 Jun; 23(6):e363-e372. PubMed ID: 35641462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The omniscient placenta: Metabolic and epigenetic regulation of fetal programming.
    Nugent BM; Bale TL
    Front Neuroendocrinol; 2015 Oct; 39():28-37. PubMed ID: 26368654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fetal programming, epigenetics, and adult onset disease.
    Lane RH
    Clin Perinatol; 2014 Dec; 41(4):815-31. PubMed ID: 25459776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetic programming by maternal nutrition: shaping future generations.
    Li CC; Maloney CA; Cropley JE; Suter CM
    Epigenomics; 2010 Aug; 2(4):539-49. PubMed ID: 22121973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The end of the beginning: epigenetic variation in utero as a mediator of later human health and disease.
    Mansell T; Saffery R
    Epigenomics; 2017 Mar; 9(3):217-221. PubMed ID: 28234019
    [No Abstract]   [Full Text] [Related]  

  • 31. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches.
    Jansson T; Powell TL
    Clin Sci (Lond); 2007 Jul; 113(1):1-13. PubMed ID: 17536998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fetal programming and gestational diabetes mellitus.
    Monteiro LJ; Norman JE; Rice GE; Illanes SE
    Placenta; 2016 Dec; 48 Suppl 1():S54-S60. PubMed ID: 26724985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beyond maternal care: The effects of extra-maternal influences within the maternal environment on offspring neurodevelopment and later-life behavior.
    Lauby SC; Fleming AS; McGowan PO
    Neurosci Biobehav Rev; 2021 Aug; 127():492-501. PubMed ID: 33905789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. At the heart of programming: the role of micro-RNAs.
    Siddeek B; Mauduit C; Yzydorczyk C; Benahmed M; Simeoni U
    J Dev Orig Health Dis; 2018 Dec; 9(6):615-631. PubMed ID: 29909803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic dynamics in psychiatric disorders: environmental programming of neurodevelopmental processes.
    Kofink D; Boks MP; Timmers HT; Kas MJ
    Neurosci Biobehav Rev; 2013 Jun; 37(5):831-45. PubMed ID: 23567520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How growth due to infant nutrition influences obesity and later disease risk.
    Brands B; Demmelmair H; Koletzko B;
    Acta Paediatr; 2014 Jun; 103(6):578-85. PubMed ID: 24521522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sex-specificity in transgenerational epigenetic programming.
    Dunn GA; Morgan CP; Bale TL
    Horm Behav; 2011 Mar; 59(3):290-5. PubMed ID: 20483359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Maternal Obesity on Fetal Programming: Molecular Approaches.
    Neri C; Edlow AG
    Cold Spring Harb Perspect Med; 2015 Sep; 6(2):a026591. PubMed ID: 26337113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transgenerational developmental programming.
    Aiken CE; Ozanne SE
    Hum Reprod Update; 2014; 20(1):63-75. PubMed ID: 24082037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes.
    Martínez JA; Cordero P; Campión J; Milagro FI
    Proc Nutr Soc; 2012 May; 71(2):276-83. PubMed ID: 22390978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.