BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25990723)

  • 1. MS2PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation.
    Degroeve S; Maddelein D; Martens L
    Nucleic Acids Res; 2015 Jul; 43(W1):W326-30. PubMed ID: 25990723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Updated MS²PIP web server delivers fast and accurate MS² peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques.
    Gabriels R; Martens L; Degroeve S
    Nucleic Acids Res; 2019 Jul; 47(W1):W295-W299. PubMed ID: 31028400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated phosphopeptide identification using multiple MS/MS fragmentation modes.
    Vandenbogaert M; Hourdel V; Jardin-Mathé O; Bigeard J; Bonhomme L; Legros V; Hirt H; Schwikowski B; Pflieger D
    J Proteome Res; 2012 Dec; 11(12):5695-703. PubMed ID: 23094866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Updated MS²PIP web server supports cutting-edge proteomics applications.
    Declercq A; Bouwmeester R; Chiva C; Sabidó E; Hirschler A; Carapito C; Martens L; Degroeve S; Gabriels R
    Nucleic Acids Res; 2023 Jul; 51(W1):W338-W342. PubMed ID: 37140039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical characterization of HCD fragmentation patterns of tryptic peptides on an LTQ Orbitrap Velos mass spectrometer.
    Shao C; Zhang Y; Sun W
    J Proteomics; 2014 Sep; 109():26-37. PubMed ID: 24981973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos.
    Frese CK; Altelaar AF; Hennrich ML; Nolting D; Zeller M; Griep-Raming J; Heck AJ; Mohammed S
    J Proteome Res; 2011 May; 10(5):2377-88. PubMed ID: 21413819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving SRM assay development: a global comparison between triple quadrupole, ion trap, and higher energy CID peptide fragmentation spectra.
    de Graaf EL; Altelaar AF; van Breukelen B; Mohammed S; Heck AJ
    J Proteome Res; 2011 Sep; 10(9):4334-41. PubMed ID: 21726076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MS2PIP: a tool for MS/MS peak intensity prediction.
    Degroeve S; Martens L
    Bioinformatics; 2013 Dec; 29(24):3199-203. PubMed ID: 24078703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags.
    Dayon L; Pasquarello C; Hoogland C; Sanchez JC; Scherl A
    J Proteomics; 2010 Feb; 73(4):769-77. PubMed ID: 19903544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PTM MarkerFinder, a software tool to detect and validate spectra from peptides carrying post-translational modifications.
    Nanni P; Panse C; Gehrig P; Mueller S; Grossmann J; Schlapbach R
    Proteomics; 2013 Aug; 13(15):2251-5. PubMed ID: 23713006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo peptide sequencing using CID and HCD spectra pairs.
    Yan Y; Kusalik AJ; Wu FX
    Proteomics; 2016 Oct; 16(20):2615-2624. PubMed ID: 27402425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.
    Tu C; Sheng Q; Li J; Ma D; Shen X; Wang X; Shyr Y; Yi Z; Qu J
    J Proteome Res; 2015 Nov; 14(11):4662-73. PubMed ID: 26390080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic investigation into the nature of tryptic HCD spectra.
    Michalski A; Neuhauser N; Cox J; Mann M
    J Proteome Res; 2012 Nov; 11(11):5479-91. PubMed ID: 22998608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GlycoMaster DB: software to assist the automated identification of N-linked glycopeptides by tandem mass spectrometry.
    He L; Xin L; Shan B; Lajoie GA; Ma B
    J Proteome Res; 2014 Sep; 13(9):3881-95. PubMed ID: 25113421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CIDer: A Statistical Framework for Interpreting Differences in CID and HCD Fragmentation.
    Wilburn DB; Richards AL; Swaney DL; Searle BC
    J Proteome Res; 2021 Apr; 20(4):1951-1965. PubMed ID: 33729787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of low complex region peptides derived from mollusk shell matrix proteins using CID, high-energy collisional dissociation, and electron transfer dissociation on an LTQ-orbitrap: implications for peptide to spectrum match.
    Marie A; Alves S; Marie B; Dubost L; Bédouet L; Berland S
    Proteomics; 2012 Oct; 12(19-20):3069-75. PubMed ID: 22888092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OpenMS-Simulator: an open-source software for theoretical tandem mass spectrum prediction.
    Wang Y; Yang F; Wu P; Bu D; Sun S
    BMC Bioinformatics; 2015 Apr; 16():110. PubMed ID: 25887925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collision energies on QTof and Orbitrap instruments: How to make proteomics measurements comparable?
    Szabó D; Schlosser G; Vékey K; Drahos L; Révész Á
    J Mass Spectrom; 2021 Jan; 56(1):e4693. PubMed ID: 33277714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Peptide-Spectrum Matching by Fragmentation Prediction Using Hidden Markov Models.
    Kirik U; Refsgaard JC; Jensen LJ
    J Proteome Res; 2019 Jun; 18(6):2385-2396. PubMed ID: 31074280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods.
    Shen Y; Tolić N; Xie F; Zhao R; Purvine SO; Schepmoes AA; Moore RJ; Anderson GA; Smith RD
    J Proteome Res; 2011 Sep; 10(9):3929-43. PubMed ID: 21678914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.