BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25990723)

  • 41. Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry.
    Cahill MG; Caprioli G; Vittori S; James KJ
    J Mass Spectrom; 2010 Sep; 45(9):1019-25. PubMed ID: 20641001
    [TBL] [Abstract][Full Text] [Related]  

  • 42. pepgrep: A tool for peptide MS/MS pattern matching.
    Chernukhin I
    Genomics Proteomics Bioinformatics; 2013 Apr; 11(2):127-32. PubMed ID: 23511729
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tandem parallel fragmentation of peptides for mass spectrometry.
    Ramos AA; Yang H; Rosen LE; Yao X
    Anal Chem; 2006 Sep; 78(18):6391-7. PubMed ID: 16970313
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deconvolution of mixture spectra and increased throughput of peptide identification by utilization of intensified complementary ions formed in tandem mass spectrometry.
    Kryuchkov F; Verano-Braga T; Hansen TA; Sprenger RR; Kjeldsen F
    J Proteome Res; 2013 Jul; 12(7):3362-71. PubMed ID: 23725413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonlocalized Searching of HCD Data for Fast and Sensitive Identification of ADP-Ribosylated Peptides.
    Colby T; Bonfiglio JJ; Matic I
    Methods Mol Biol; 2018; 1813():255-269. PubMed ID: 30097874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pinpointing phosphorylation sites: Quantitative filtering and a novel site-specific x-ion fragment.
    Kelstrup CD; Hekmat O; Francavilla C; Olsen JV
    J Proteome Res; 2011 Jul; 10(7):2937-48. PubMed ID: 21526838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A machine learning approach to explore the spectra intensity pattern of peptides using tandem mass spectrometry data.
    Zhou C; Bowler LD; Feng J
    BMC Bioinformatics; 2008 Jul; 9():325. PubMed ID: 18664292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.
    Ning K; Ng HK; Leong HW
    Genome Inform; 2007; 19():119-30. PubMed ID: 18546510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. De novo peptide sequencing by tandem MS using complementary CID and electron transfer dissociation.
    Bertsch A; Leinenbach A; Pervukhin A; Lubeck M; Hartmer R; Baessmann C; Elnakady YA; Müller R; Böcker S; Huber CG; Kohlbacher O
    Electrophoresis; 2009 Nov; 30(21):3736-47. PubMed ID: 19862751
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting intensity ranks of peptide fragment ions.
    Frank AM
    J Proteome Res; 2009 May; 8(5):2226-40. PubMed ID: 19256476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adenylylation, MS, and proteomics--Introducing a "new" modification to bottom-up proteomics.
    Hansen T; Albers M; Hedberg C; Sickmann A
    Proteomics; 2013 Mar; 13(6):955-63. PubMed ID: 23335384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Basophile: accurate fragment charge state prediction improves peptide identification rates.
    Wang D; Dasari S; Chambers MC; Holman JD; Chen K; Liebler DC; Orton DJ; Purvine SO; Monroe ME; Chung CY; Rose KL; Tabb DL
    Genomics Proteomics Bioinformatics; 2013 Apr; 11(2):86-95. PubMed ID: 23499924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterizing protein glycosylation sites through higher-energy C-trap dissociation.
    Segu ZM; Mechref Y
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1217-25. PubMed ID: 20391591
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NovoHCD: de novo peptide sequencing from HCD spectra.
    Yan Y; Kusalik AJ; Wu FX
    IEEE Trans Nanobioscience; 2014 Jun; 13(2):65-72. PubMed ID: 24771591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of low-energy collision-induced dissociation spectra of peptides.
    Zhang Z
    Anal Chem; 2004 Jul; 76(14):3908-22. PubMed ID: 15253624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A support for the identification of non-tryptic peptides based on low resolution tandem and sequential mass spectrometry data: the INSPIRE software.
    Losito I; Mavelli F; Loiotile AD; Palmisano F
    Anal Chim Acta; 2012 Mar; 718():70-7. PubMed ID: 22305900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. pNovo+: de novo peptide sequencing using complementary HCD and ETD tandem mass spectra.
    Chi H; Chen H; He K; Wu L; Yang B; Sun RX; Liu J; Zeng WF; Song CQ; He SM; Dong MQ
    J Proteome Res; 2013 Feb; 12(2):615-25. PubMed ID: 23272783
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer.
    Kelstrup CD; Young C; Lavallee R; Nielsen ML; Olsen JV
    J Proteome Res; 2012 Jun; 11(6):3487-97. PubMed ID: 22537090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimized Fragmentation Improves the Identification of Peptides Cross-Linked by MS-Cleavable Reagents.
    Stieger CE; Doppler P; Mechtler K
    J Proteome Res; 2019 Mar; 18(3):1363-1370. PubMed ID: 30693776
    [TBL] [Abstract][Full Text] [Related]  

  • 60. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.