These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration. Siqueira IA; Corat MA; Cavalcanti Bd; Ribeiro Neto WA; Martin AA; Bretas RE; Marciano FR; Lobo AO ACS Appl Mater Interfaces; 2015 May; 7(18):9385-98. PubMed ID: 25899398 [TBL] [Abstract][Full Text] [Related]
5. In vitro osteogenesis process induced by hybrid nanohydroxyapatite/graphene nanoribbons composites. de Vasconcellos LMR; do Prado RF; Sartori EM; Mendonça DBS; Mendonça G; Marciano FR; Lobo AO J Mater Sci Mater Med; 2019 Jun; 30(7):81. PubMed ID: 31254104 [TBL] [Abstract][Full Text] [Related]
6. In vitro and in vivo studies of a novel nanohydroxyapatite/superhydrophilic vertically aligned carbon nanotube nanocomposites. Lobo AO; Siqueira IA; das Neves MF; Marciano FR; Corat EJ; Corat MA J Mater Sci Mater Med; 2013 Jul; 24(7):1723-32. PubMed ID: 23609000 [TBL] [Abstract][Full Text] [Related]
7. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Paşcu EI; Stokes J; McGuinness GB Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4905-16. PubMed ID: 24094204 [TBL] [Abstract][Full Text] [Related]
8. A novel nano-hydroxyapatite - PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties. G R; S B; Venkatesan B; Vellaichamy E Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():221-228. PubMed ID: 28415457 [TBL] [Abstract][Full Text] [Related]
9. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613 [TBL] [Abstract][Full Text] [Related]
10. Effect of ultrasound irradiation on the production of nHAp/MWCNT nanocomposites. Lobo AO; Zanin H; Siqueira IA; Leite NC; Marciano FR; Corat EJ Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4305-12. PubMed ID: 23910347 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials. Mohamed KR; Beherei HH; El Bassyouni GT; El Mahallawy N Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4126-32. PubMed ID: 23910323 [TBL] [Abstract][Full Text] [Related]
12. Fast preparation of hydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube composites for bioactive application. Lobo AO; Corat MA; Ramos SC; Matsushima JT; Granato AE; Pacheco-Soares C; Corat EJ Langmuir; 2010 Dec; 26(23):18308-14. PubMed ID: 20961085 [TBL] [Abstract][Full Text] [Related]
13. Mechanical properties and in vitro evaluation of bioactivity and degradation of dexamethasone-releasing poly-D-L-lactide/nano-hydroxyapatite composite scaffolds. Chen L; Tang CY; Tsui CP; Chen DZ J Mech Behav Biomed Mater; 2013 Jun; 22():41-50. PubMed ID: 23639839 [TBL] [Abstract][Full Text] [Related]
14. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729 [TBL] [Abstract][Full Text] [Related]
16. [Study on the development of Ag-nano-hydroxyapatite/polyamide66 porous scaffolds with surface mineralization]. Fan J; Chang S; Dong M; Huang D; Li J; Jiang D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1119-24. PubMed ID: 23469542 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Graphene-Hydroxyapatite Nanocomposites for Potential Use in Bone Tissue Engineering. Ghosh S; Bhagwat T; Kitture R; Thongmee S; Webster TJ J Vis Exp; 2022 Jul; (185):. PubMed ID: 35969088 [TBL] [Abstract][Full Text] [Related]
18. Carbon Nanotube Reinforced Collagen/Hydroxyapatite Scaffolds Improve Bone Tissue Formation In Vitro and In Vivo. Jing Z; Wu Y; Su W; Tian M; Jiang W; Cao L; Zhao L; Zhao Z Ann Biomed Eng; 2017 Sep; 45(9):2075-2087. PubMed ID: 28620768 [TBL] [Abstract][Full Text] [Related]
19. High loads of nano-hydroxyapatite/graphene nanoribbon composites guided bone regeneration using an osteoporotic animal model. Oliveira FC; Carvalho JO; Gusmão SBS; Gonçalves LS; Soares Mendes LM; Freitas SAP; Gusmão GOM; Viana BC; Marciano FR; Lobo AO Int J Nanomedicine; 2019; 14():865-874. PubMed ID: 30774339 [TBL] [Abstract][Full Text] [Related]
20. Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Ni P; Bi H; Zhao G; Han Y; Wickramaratne MN; Dai H; Wang X Colloids Surf B Biointerfaces; 2019 Jan; 173():171-177. PubMed ID: 30292025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]