BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25991234)

  • 1. New technologies applied to surgical processes: Virtual Reality and rapid prototyping.
    Suárez-Mejías C; Gomez-Ciriza G; Valverde I; Parra Calderón C; Gómez-Cía T
    Stud Health Technol Inform; 2015; 210():669-71. PubMed ID: 25991234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery.
    Kurenov SN; Ionita C; Sammons D; Demmy TL
    J Thorac Cardiovasc Surg; 2015 Apr; 149(4):973-9.e1. PubMed ID: 25659851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect.
    Feng Z; Zhao J; Zhou L; Dong Y; Zhao Y
    J Oral Maxillofac Surg; 2009 Oct; 67(10):2266-74. PubMed ID: 19761922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Routine clinical application of virtual reality in abdominal surgery.
    Sampogna G; Pugliese R; Elli M; Vanzulli A; Forgione A
    Minim Invasive Ther Allied Technol; 2017 Jun; 26(3):135-143. PubMed ID: 28084141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of virtual reality and stereolithographic models in maxillo-facial surgical planning.
    Robiony M; Salvo I; Costa F; Zerman N; Bandera C; Filippi S; Felice M; Politi M
    J Craniofac Surg; 2008 Mar; 19(2):482-9. PubMed ID: 18362729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical feasibility and efficacy of using virtual surgical planning in bimaxillary orthognathic surgery without intermediate splint.
    Li Y; Jiang Y; Zhang N; Xu R; Hu J; Zhu S
    J Craniofac Surg; 2015 Mar; 26(2):501-5. PubMed ID: 25699539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed models and virtual reality as new tools for image-guided robot-assisted nephron-sparing surgery: a systematic review of the newest evidences.
    Checcucci E; De Cillis S; Porpiglia F
    Curr Opin Urol; 2020 Jan; 30(1):55-64. PubMed ID: 31725000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research on the development of image guided oral implant system].
    Chen X; Lin Y; Wu Y; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):429-34, 438. PubMed ID: 18610636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surgical planning for microsurgical excision of cerebral arterio-venous malformations using virtual reality technology.
    Ng I; Hwang PY; Kumar D; Lee CK; Kockro RA; Sitoh YY
    Acta Neurochir (Wien); 2009 May; 151(5):453-63; discussion 463. PubMed ID: 19319471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VirSSPA- a virtual reality tool for surgical planning workflow.
    Suárez C; Acha B; Serrano C; Parra C; Gómez T
    Int J Comput Assist Radiol Surg; 2009 Mar; 4(2):133-9. PubMed ID: 20033611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual model surgery for efficient planning and surgical performance.
    McCormick SU; Drew SJ
    J Oral Maxillofac Surg; 2011 Mar; 69(3):638-44. PubMed ID: 21353926
    [No Abstract]   [Full Text] [Related]  

  • 12. The Virtual Pediatric Airways Workbench.
    Quammen CW; Taylor RM; Krajcevski P; Mitran S; Enquobahrie A; Superfine R; Davis B; Davis S; Zdanski C
    Stud Health Technol Inform; 2016; 220():295-300. PubMed ID: 27046595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning.
    Badiali G; Ferrari V; Cutolo F; Freschi C; Caramella D; Bianchi A; Marchetti C
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1970-6. PubMed ID: 25441867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innovative procedure for computer-assisted genioplasty: three-dimensional cephalometry, rapid-prototyping model and surgical splint.
    Olszewski R; Tranduy K; Reychler H
    Int J Oral Maxillofac Surg; 2010 Jul; 39(7):721-4. PubMed ID: 20417056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved planning of endoscopic sinonasal surgery from 3-dimensional images with Osirix® and stereolithography.
    Sánchez-Gómez S; Herrero-Salado TF; Maza-Solano JM; Ropero-Romero F; González-García J; Ambrosiani-Fernández J
    Acta Otorrinolaringol Esp; 2015; 66(6):317-25. PubMed ID: 25597251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results - our experience in 16 cases.
    Aboul-Hosn Centenero S; Hernández-Alfaro F
    J Craniomaxillofac Surg; 2012 Feb; 40(2):162-8. PubMed ID: 21458285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary application of virtual simulation and reposition template for zygomatico-orbitomaxillary complex fracture.
    Li P; Tang W; Li J; Tian DW
    J Craniofac Surg; 2012 Sep; 23(5):1436-9. PubMed ID: 22948624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distributed augmented reality with 3-D lung dynamics--a planning tool concept.
    Hamza-Lup FG; Santhanam AP; Imielińska C; Meeks SL; Rolland JP
    IEEE Trans Inf Technol Biomed; 2007 Jan; 11(1):40-6. PubMed ID: 17249402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of advanced virtual reality and 3D computer assisted technologies in tele-3D-computer assisted surgery in rhinology.
    Klapan I; Vranjes Z; Prgomet D; Lukinović J
    Coll Antropol; 2008 Mar; 32(1):217-9. PubMed ID: 18494207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel virtual reality environment for preoperative planning and simulation of image guided intracardiac surgeries with robotic manipulators.
    Yeniaras E; Deng Z; Syed MA; Davies MG; Tsekos NV
    Stud Health Technol Inform; 2011; 163():716-22. PubMed ID: 21335887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.