These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25991528)

  • 1. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries.
    Xia C; Black R; Fernandes R; Adams B; Nazar LF
    Nat Chem; 2015 Jun; 7(6):496-501. PubMed ID: 25991528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic origin of low polarization in aprotic Na-O
    Ma S; McKee WC; Wang J; Guo L; Jansen M; Xu Y; Peng Z
    Phys Chem Chem Phys; 2017 May; 19(19):12375-12383. PubMed ID: 28462412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes with a Protic Additive.
    Abate II; Thompson LE; Kim HC; Aetukuri NB
    J Phys Chem Lett; 2016 Jun; 7(12):2164-9. PubMed ID: 27214400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into Electrochemical Oxidation of NaO
    Morasch R; Kwabi DG; Tulodziecki M; Risch M; Zhang S; Shao-Horn Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4374-4381. PubMed ID: 28173703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rechargeable room-temperature sodium superoxide (NaO2) battery.
    Hartmann P; Bender CL; Vračar M; Dürr AK; Garsuch A; Janek J; Adelhelm P
    Nat Mater; 2013 Mar; 12(3):228-32. PubMed ID: 23202372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Porous Carbon Spheres for High-Performance Na-O
    Sun B; Kretschmer K; Xie X; Munroe P; Peng Z; Wang G
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28374959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries.
    McCloskey BD; Garcia JM; Luntz AC
    J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na-O
    Lutz L; Dachraoui W; Demortière A; Johnson LR; Bruce PG; Grimaud A; Tarascon JM
    Nano Lett; 2018 Feb; 18(2):1280-1289. PubMed ID: 29356550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries.
    Ma S; Wu Y; Wang J; Zhang Y; Zhang Y; Yan X; Wei Y; Liu P; Wang J; Jiang K; Fan S; Xu Y; Peng Z
    Nano Lett; 2015 Dec; 15(12):8084-90. PubMed ID: 26535791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Evidence of Solution-Mediated Superoxide Transport and Organic Radical Formation in Sodium-Oxygen Batteries.
    Xia C; Fernandes R; Cho FH; Sudhakar N; Buonacorsi B; Walker S; Xu M; Baugh J; Nazar LF
    J Am Chem Soc; 2016 Sep; 138(35):11219-26. PubMed ID: 27498623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Singlet Oxygen during Cycling of the Aprotic Sodium-O
    Schafzahl L; Mahne N; Schafzahl B; Wilkening M; Slugovc C; Borisov SM; Freunberger SA
    Angew Chem Int Ed Engl; 2017 Dec; 56(49):15728-15732. PubMed ID: 29024316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Stability of NaO
    Liu C; Carboni M; Brant WR; Pan R; Hedman J; Zhu J; Gustafsson T; Younesi R
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13534-13541. PubMed ID: 29616791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.
    Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M
    ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O
    Ma JL; Meng FL; Yu Y; Liu DP; Yan JM; Zhang Y; Zhang XB; Jiang Q
    Nat Chem; 2019 Jan; 11(1):64-70. PubMed ID: 30420775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-layered Fe2O3/graphene composite with mesopores as a catalyst for rechargeable aprotic lithium-oxygen batteries.
    Feng N; Mu X; Zheng M; Wang C; Lin Z; Zhang X; Shi Y; He P; Zhou H
    Nanotechnology; 2016 Sep; 27(36):365402. PubMed ID: 27479810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrolyte-controlled discharge product distribution of Na-O
    Wang B; Zhao N; Wang Y; Zhang W; Lu W; Guo X; Liu J
    Phys Chem Chem Phys; 2017 Jan; 19(4):2940-2949. PubMed ID: 28079211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.
    Kwabi DG; Tułodziecki M; Pour N; Itkis DM; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2016 Apr; 7(7):1204-12. PubMed ID: 26949979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-Oxygen Battery: Steps Toward Reality.
    Landa-Medrano I; Li C; Ortiz-Vitoriano N; Ruiz de Larramendi I; Carrasco J; Rojo T
    J Phys Chem Lett; 2016 Apr; 7(7):1161-6. PubMed ID: 26961215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple synthesis of highly catalytic carbon-free MnCo2O4@Ni as an oxygen electrode for rechargeable Li-O2 batteries with long-term stability.
    Kalubarme RS; Jadhav HS; Ngo DT; Park GE; Fisher JG; Choi YI; Ryu WH; Park CJ
    Sci Rep; 2015 Aug; 5():13266. PubMed ID: 26292965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amorphous Li2 O2 : Chemical Synthesis and Electrochemical Properties.
    Zhang Y; Cui Q; Zhang X; McKee WC; Xu Y; Ling S; Li H; Zhong G; Yang Y; Peng Z
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10717-21. PubMed ID: 27486085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.