These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 25991704)

  • 1. Porcine models of cutaneous wound healing.
    Seaton M; Hocking A; Gibran NS
    ILAR J; 2015; 56(1):127-38. PubMed ID: 25991704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scar formation following excisional and burn injuries in a red Duroc pig model.
    Blackstone BN; Kim JY; McFarland KL; Sen CK; Supp DM; Bailey JK; Powell HM
    Wound Repair Regen; 2017 Aug; 25(4):618-631. PubMed ID: 28727221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Local Inflammation and Hypoxia in the Formation of Hypertrophic Scars-A New Model in the Duroc Pig.
    Nischwitz SP; Fink J; Schellnegger M; Luze H; Bubalo V; Tetyczka C; Roblegg E; Holecek C; Zacharias M; Kamolz LP; Kotzbeck P
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wound healing in oral mucosa results in reduced scar formation as compared with skin: evidence from the red Duroc pig model and humans.
    Wong JW; Gallant-Behm C; Wiebe C; Mak K; Hart DA; Larjava H; Häkkinen L
    Wound Repair Regen; 2009; 17(5):717-29. PubMed ID: 19769724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Healing of mid-dermal burns in a diabetic porcine model.
    Singer AJ; Taira BR; McClain SA; Rooney J; Steinhauff N; Zimmerman T; Clark RA
    J Burn Care Res; 2009; 30(5):880-6. PubMed ID: 19692921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making sense of hypertrophic scar: a role for nerves.
    Scott JR; Muangman P; Gibran NS
    Wound Repair Regen; 2007; 15 Suppl 1():S27-31. PubMed ID: 17727464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin wound healing in the first generation (F1) offspring of Yorkshire and red Duroc pigs: evidence for genetic inheritance of wound phenotype.
    Gallant-Behm CL; Tsao H; Reno C; Olson ME; Hart DA
    Burns; 2006 Mar; 32(2):180-93. PubMed ID: 16448761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A retrospective review of burn dressings on a porcine burn model.
    Wang XQ; Kravchuk O; Kimble RM
    Burns; 2010 Aug; 36(5):680-7. PubMed ID: 19864074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic inflammatory foci in burn scars: data from a porcine burn model.
    Wang XQ; Phillips GE; Wilkie I; Greer R; Kimble RM
    J Cutan Pathol; 2010 May; 37(5):530-4. PubMed ID: 19614732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Burn healing is dependent on burn site: a quantitative analysis from a porcine burn model.
    Wang XQ; Liu PY; Kempf M; Cuttle L; Chang AH; Wong M; Kravchuk O; Mill J; Kimble RM
    Burns; 2009 Mar; 35(2):264-9. PubMed ID: 18845398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine wound models for skin substitution and burn treatment.
    Middelkoop E; van den Bogaerdt AJ; Lamme EN; Hoekstra MJ; Brandsma K; Ulrich MM
    Biomaterials; 2004 Apr; 25(9):1559-67. PubMed ID: 14697858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biphasic presence of fibrocytes in a porcine hypertrophic scar model.
    Travis TE; Mino MJ; Moffatt LT; Mauskar NA; Prindeze NJ; Ghassemi P; Ramella-Roman JC; Jordan MH; Shupp JW
    J Burn Care Res; 2015; 36(3):e125-35. PubMed ID: 25051518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new experimental delayed wound healing model in rabbits.
    Aksoy B; Aksoy HM; Civaş E; Ustün H; Atakan N
    Eur J Dermatol; 2009; 19(6):565-9. PubMed ID: 19661018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the role of stem cells in cutaneous wound healing.
    Lau K; Paus R; Tiede S; Day P; Bayat A
    Exp Dermatol; 2009 Nov; 18(11):921-33. PubMed ID: 19719838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new experimental hypertrophic scar model in guinea pigs.
    Aksoy MH; Vargel I; Canter IH; Erk Y; Sargon M; Pinar A; Tezel GG
    Aesthetic Plast Surg; 2002; 26(5):388-96. PubMed ID: 12432481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell suspensions of autologous keratinocytes or autologous fibroblasts accelerate the healing of full thickness skin wounds in a diabetic porcine wound healing model.
    Velander P; Theopold C; Bleiziffer O; Bergmann J; Svensson H; Feng Y; Eriksson E
    J Surg Res; 2009 Nov; 157(1):14-20. PubMed ID: 19589541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative wound healing--are the small animal veterinarian's clinical patients an improved translational model for human wound healing research?
    Volk SW; Bohling MW
    Wound Repair Regen; 2013; 21(3):372-81. PubMed ID: 23627643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging drugs for the treatment of wound healing.
    Zielins ER; Brett EA; Luan A; Hu MS; Walmsley GG; Paik K; Senarath-Yapa K; Atashroo DA; Wearda T; Lorenz HP; Wan DC; Longaker MT
    Expert Opin Emerg Drugs; 2015 Jun; 20(2):235-46. PubMed ID: 25704608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photobiomodulation improves cutaneous wound healing in an animal model of type II diabetes.
    Byrnes KR; Barna L; Chenault VM; Waynant RW; Ilev IK; Longo L; Miracco C; Johnson B; Anders JJ
    Photomed Laser Surg; 2004 Aug; 22(4):281-90. PubMed ID: 15345169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.
    Ferguson MW; O'Kane S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):839-50. PubMed ID: 15293811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.