These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 25991811)
1. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions. Pyatrikas DV; Fedoseeva IV; Varakina NN; Rusaleva TM; Stepanov AV; Fedyaeva AV; Borovskii GB; Rikhvanov EG FEMS Microbiol Lett; 2015 Jun; 362(12):fnv082. PubMed ID: 25991811 [TBL] [Abstract][Full Text] [Related]
2. Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Fedyaeva AV; Stepanov AV; Lyubushkina IV; Pobezhimova TP; Rikhvanov EG Biochemistry (Mosc); 2014 Nov; 79(11):1202-10. PubMed ID: 25540005 [TBL] [Abstract][Full Text] [Related]
3. The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heat-shock conditions. Fedoseeva IV; Pyatrikas DV; Stepanov AV; Fedyaeva AV; Varakina NN; Rusaleva TM; Borovskii GB; Rikhvanov EG Sci Rep; 2017 May; 7(1):2586. PubMed ID: 28566714 [TBL] [Abstract][Full Text] [Related]
4. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Moraitis C; Curran BP Yeast; 2004 Mar; 21(4):313-23. PubMed ID: 15042591 [TBL] [Abstract][Full Text] [Related]
5. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. Pérez-Gallardo RV; Briones LS; Díaz-Pérez AL; Gutiérrez S; Rodríguez-Zavala JS; Campos-García J FEMS Yeast Res; 2013 Dec; 13(8):804-19. PubMed ID: 24028658 [TBL] [Abstract][Full Text] [Related]
6. The novel equisetin-like compound, TA-289, causes aberrant mitochondrial morphology which is independent of the production of reactive oxygen species in Saccharomyces cerevisiae. Quek NC; Matthews JH; Bloor SJ; Jones DA; Bircham PW; Heathcott RW; Atkinson PH Mol Biosyst; 2013 Aug; 9(8):2125-33. PubMed ID: 23715404 [TBL] [Abstract][Full Text] [Related]
7. [Induction of Hsp104 synthesis in Saccharomyces cerevisiae is inhibited by the petite mutation in the stationary growth phase]. Fedoseeva IV; Rikhanov EG; Varakina NN; Rusaleva TM; Pyatrikas DV; Stepanov AV; Fedyaeva AV Genetika; 2014 Mar; 50(3):273-81. PubMed ID: 25438547 [TBL] [Abstract][Full Text] [Related]
9. Can the different heat shock response thresholds found in fermenting and respiring yeast cells be attributed to their differential redox states? Moraitis C; Curran BP Yeast; 2007 Aug; 24(8):653-66. PubMed ID: 17533621 [TBL] [Abstract][Full Text] [Related]
10. Do mitochondria regulate the heat-shock response in Saccharomyces cerevisiae? Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Knorre DA; Voinikov VK Curr Genet; 2005 Jul; 48(1):44-59. PubMed ID: 15983831 [TBL] [Abstract][Full Text] [Related]
11. Glutamate-induced free radical formation in rat brain synaptosomes is not dependent on intrasynaptosomal mitochondria membrane potential. Alekseenko AV; Lemeshchenko VV; Pekun TG; Waseem TV; Fedorovich SV Neurosci Lett; 2012 Apr; 513(2):238-42. PubMed ID: 22387155 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance. Rikhvanov EG; Fedoseeva IV; Varakina NN; Rusaleva TM; Fedyaeva AV Biochemistry (Mosc); 2014 Jan; 79(1):16-24. PubMed ID: 24512659 [TBL] [Abstract][Full Text] [Related]
13. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions. Moraitis C; Curran BP Yeast; 2010 Feb; 27(2):103-14. PubMed ID: 20014153 [TBL] [Abstract][Full Text] [Related]
14. Hyperoxia and thyroxine treatment and the relationships between reactive oxygen species generation, mitochondrial membrane potential, and cardiolipin in human lens epithelial cell cultures. Huang L; Yappert MC; Jumblatt MM; Borchman D Curr Eye Res; 2008 Jul; 33(7):575-86. PubMed ID: 18600490 [TBL] [Abstract][Full Text] [Related]
15. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. KC S; Cárcamo JM; Golde DW FASEB J; 2005 Oct; 19(12):1657-67. PubMed ID: 16195374 [TBL] [Abstract][Full Text] [Related]
16. Cyanide preconditioning protects brain endothelial and NT2 neuron-like cells against glucotoxicity: role of mitochondrial reactive oxygen species and HIF-1α. Correia SC; Santos RX; Cardoso SM; Santos MS; Oliveira CR; Moreira PI Neurobiol Dis; 2012 Jan; 45(1):206-18. PubMed ID: 21854848 [TBL] [Abstract][Full Text] [Related]
17. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Sugiyama K; Kawamura A; Izawa S; Inoue Y Biochem J; 2000 Nov; 352 Pt 1(Pt 1):71-8. PubMed ID: 11062059 [TBL] [Abstract][Full Text] [Related]
18. Oxidation-induced changes in human lens epithelial cells 2. Mitochondria and the generation of reactive oxygen species. Huang L; Tang D; Yappert MC; Borchman D Free Radic Biol Med; 2006 Sep; 41(6):926-36. PubMed ID: 16934675 [TBL] [Abstract][Full Text] [Related]