These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25991923)

  • 1. New generation biofuel: continuous acidogenesis of sucrose-raffinose mixture simulating vinasse is promoted by γ-alumina pellets.
    Lappa K; Kandylis P; Bastas N; Klaoudatos S; Athanasopoulos N; Bekatorou A; Kanellaki M; Koutinas AA
    Biotechnol Biofuels; 2015; 8():74. PubMed ID: 25991923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous acidogenesis of sucrose, raffinose and vinasse using mineral kissiris as promoter.
    Lappa K; Kandylis P; Bekatorou A; Bastas N; Klaoudatos S; Athanasopoulos N; Kanellaki M; Koutinas AA
    Bioresour Technol; 2015; 188():43-8. PubMed ID: 25748017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. γ-Alumina as a process advancing tool for a new generation biofuel.
    Syngiridis K; Bekatorou A; Kallis M; Kandylis P; Kanellaki M; Koutinas AA
    Bioresour Technol; 2013 Mar; 132():45-8. PubMed ID: 23399494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Favouring butyrate production for a new generation biofuel by acidogenic glucose fermentation using cells immobilised on γ-alumina.
    Syngiridis K; Bekatorou A; Kandylis P; Larroche C; Kanellaki M; Koutinas AA
    Bioresour Technol; 2014 Jun; 161():118-23. PubMed ID: 24690582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Economic evaluation of technology for a new generation biofuel production using wastes.
    Koutinas A; Kanellaki M; Bekatorou A; Kandylis P; Pissaridi K; Dima A; Boura K; Lappa K; Tsafrakidou P; Stergiou PY; Foukis A; Gkini OA; Papamichael EM
    Bioresour Technol; 2016 Jan; 200():178-85. PubMed ID: 26492169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding microbiome dynamics and functional responses during acidogenic fermentation of sucrose and sugarcane vinasse through metatranscriptomic analysis.
    Mota VT; Delforno TP; Ribeiro JC; Zaiat M; Oliveira VM
    Environ Res; 2024 Apr; 246():118150. PubMed ID: 38218518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable production of a new generation biofuel by lipase-catalyzed esterification of fatty acids from liquid industrial waste biomass.
    Foukis A; Gkini OA; Stergiou PY; Sakkas VA; Dima A; Boura K; Koutinas A; Papamichael EM
    Bioresour Technol; 2017 Aug; 238():122-128. PubMed ID: 28433899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient free fatty acid production in engineered Escherichia coli strains using soybean oligosaccharides as feedstock.
    Wang D; Wu H; Thakker C; Beyersdorf J; Bennett GN; San KY
    Biotechnol Prog; 2015; 31(3):686-94. PubMed ID: 25919701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resource recovery from sugarcane vinasse by anaerobic digestion - A review.
    Silva AFR; Brasil YL; Koch K; Amaral MCS
    J Environ Manage; 2021 Oct; 295():113137. PubMed ID: 34198179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High value added lipids produced by microorganisms: a potential use of sugarcane vinasse.
    Fernandes BS; Vieira JPF; Contesini FJ; Mantelatto PE; Zaiat M; Pradella JGDC
    Crit Rev Biotechnol; 2017 Dec; 37(8):1048-1061. PubMed ID: 28423943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-resolved metagenomics of sugarcane vinasse bacteria.
    Cassman NA; Lourenço KS; do Carmo JB; Cantarella H; Kuramae EE
    Biotechnol Biofuels; 2018; 11():48. PubMed ID: 29483941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source.
    Sydney EB; Larroche C; Novak AC; Nouaille R; Sarma SJ; Brar SK; Letti LA; Soccol VT; Soccol CR
    Bioresour Technol; 2014 May; 159():380-6. PubMed ID: 24675397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of undissociated volatile fatty acids on acidogenesis in a two-phase anaerobic system.
    Xiao K; Zhou Y; Guo C; Maspolim Y; Ng WJ
    J Environ Sci (China); 2016 Apr; 42():196-201. PubMed ID: 27090711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of lactic acid production during hydrolysis and acidogenesis of food waste.
    Gu XY; Liu JZ; Wong JWC
    Bioresour Technol; 2018 Jan; 247():711-715. PubMed ID: 30060404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl.
    He X; Yin J; Liu J; Chen T; Shen D
    Bioresour Technol; 2019 Jan; 271():244-250. PubMed ID: 30273828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane.
    Sarkar O; Venkata Mohan S
    Bioresour Technol; 2017 Oct; 242():68-76. PubMed ID: 28583405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing volatile fatty acid production in partial acidogenesis of swine wastewater.
    Yang K; Oh C; Hwang S
    Water Sci Technol; 2004; 50(8):169-76. PubMed ID: 15566200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile compounds flavoring obtained from Brazilian and Mexican spirit wastes by yeasts.
    Dos Reis KC; Arrizon J; Amaya-Delgado L; Gschaedler A; Schwan RF; Silva CF
    World J Microbiol Biotechnol; 2018 Sep; 34(10):152. PubMed ID: 30267248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation.
    Zhang L; Loh KC; Dai Y; Tong YW
    Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The promotion of molasse alcoholic fermentation using Saccharomyces cerevisiae in the presence of gamma-alumina.
    Iconomou L; Psarianos C; Kanellaki M; Kalliafas A; Kana K; Koutinas AA
    Appl Biochem Biotechnol; 1991 Oct; 31(1):83-96. PubMed ID: 1796813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.