These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 25992426)

  • 1. Anodic growth and biomedical applications of TiO2 nanotubes.
    Cipriano AF; Miller C; Liu H
    J Biomed Nanotechnol; 2014 Oct; 10(10):2977-3003. PubMed ID: 25992426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical growth of vertically-oriented high aspect ratio titania nanotubes by rabid anodization in fluoride-free media.
    Fahim NF; Sekino T; Morks MF; Kusunose T
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1803-18. PubMed ID: 19435043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications.
    Mohan L; Anandan C; Rajendran N
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():394-401. PubMed ID: 25746285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OH radical generation in a photocatalytic reactor using TiO2 nanotube plates.
    Lee K; Ku H; Pak D
    Chemosphere; 2016 Apr; 149():114-20. PubMed ID: 26855214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of highly ordered TiO2 nanotube arrays via anodization of Ti-6Al-4V alloy sheet.
    Wang L; Zhao TT; Zhang Z; Li G
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8312-21. PubMed ID: 21121333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of near micrometer-sized TiO2 nanotube arrays by high voltage anodization.
    Ni J; Noh K; Frandsen CJ; Kong SD; He G; Tang T; Jin S
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):259-64. PubMed ID: 25428070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations.
    Khudhair D; Bhatti A; Li Y; Hamedani HA; Garmestani H; Hodgson P; Nahavandi S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1125-1142. PubMed ID: 26652471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties.
    Lewandowska Ż; Piszczek P; Radtke A; Jędrzejewski T; Kozak W; Sadowska B
    J Mater Sci Mater Med; 2015 Apr; 26(4):163. PubMed ID: 25791457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organized double-wall oxide nanotube layers on glass-forming Ti-Zr-Si(-Nb) alloys.
    Sopha H; Pohl D; Damm C; Hromadko L; Rellinghaus B; Gebert A; Macak JM
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):258-263. PubMed ID: 27770889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.
    Ni J; Frandsen CJ; Noh K; Johnston GW; He G; Tang T; Jin S
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1460-6. PubMed ID: 23827596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.
    Oh SH; Finõnes RR; Daraio C; Chen LH; Jin S
    Biomaterials; 2005 Aug; 26(24):4938-43. PubMed ID: 15769528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced interfacial adhesion and osseointegration of anodic TiO
    Hu N; Wu Y; Xie L; Yusuf SM; Gao N; Starink MJ; Tong L; Chu PK; Wang H
    Acta Biomater; 2020 Apr; 106():360-375. PubMed ID: 32058083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties.
    Nah YC; Ghicov A; Kim D; Berger S; Schmuki P
    J Am Chem Soc; 2008 Dec; 130(48):16154-5. PubMed ID: 18998674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.
    Nemati SH; Hadjizadeh A
    AAPS PharmSciTech; 2017 Aug; 18(6):2180-2187. PubMed ID: 28063103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications.
    Fu Y; Mo A
    Nanoscale Res Lett; 2018 Jun; 13(1):187. PubMed ID: 29956033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-Regulated Growth of Titanium Dioxide (TiO
    Fan R; Chen X; Wang Z; Custer D; Wan J
    Small; 2017 Aug; 13(30):. PubMed ID: 28612493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of anti-aging TiO2 nanotubes on biomedical Ti alloys.
    Hamlekhan A; Butt A; Patel S; Royhman D; Takoudis C; Sukotjo C; Yuan J; Jursich G; Mathew MT; Hendrickson W; Virdi A; Shokuhfar T
    PLoS One; 2014; 9(5):e96213. PubMed ID: 24788345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anodic titania nanotubes grown on titanium tubular electrodes.
    Sun L; Wang X; Li M; Zhang S; Wang Q
    Langmuir; 2014 Mar; 30(10):2835-41. PubMed ID: 24564582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of electro-chemical properties of TiO
    Khudhair D; Amani Hamedani H; Gaburro J; Shafei S; Nahavandi S; Garmestani H; Bhatti A
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():111-120. PubMed ID: 28531985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.