These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25992426)

  • 21. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.
    Allam NK; Alamgir F; El-Sayed MA
    ACS Nano; 2010 Oct; 4(10):5819-26. PubMed ID: 20815374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of the nano-tubular anodic TiO2 buffer layer on bioactive hydroxyapatite coating.
    Piao Z; Qiu J; Wu Y; Park SJ; He W; Timur A; Ryu SC; Kim HK; Hwang YH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):286-90. PubMed ID: 21446441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures.
    Ghicov A; Schmuki P
    Chem Commun (Camb); 2009 May; (20):2791-808. PubMed ID: 19436878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth, Structure, and Photocatalytic Properties of Hierarchical V₂O₅-TiO₂ Nanotube Arrays Obtained from the One-step Anodic Oxidation of Ti-V Alloys.
    Nevárez-Martínez MC; Mazierski P; Kobylański MP; Szczepańska G; Trykowski G; Malankowska A; Kozak M; Espinoza-Montero PJ; Zaleska-Medynska A
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28379185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Fabrication of titanium dioxide nanotube array and effects of its osteoblast proliferation and alkaline phosphatase activity].
    Yu WQ; Jiang XQ; Zhang YL; Zhang FQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2009 Dec; 44(12):751-5. PubMed ID: 20193294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrode distance regulates the anodic growth of titanium dioxide (TiO
    Fan R; Wan J
    Nanotechnology; 2017 Jun; 28(25):25LT01. PubMed ID: 28453444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the influence of electrolyte aging in electrochemical anodization of titanium.
    Gulati K; Martinez RDO; Czerwiński M; Michalska-Domańska M
    Adv Colloid Interface Sci; 2022 Apr; 302():102615. PubMed ID: 35303577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface modification and bioactivity of anodic Ti6Al4V alloy.
    Saharudin KA; Sreekantan S; Abd Aziz SN; Hazan R; Lai CW; Mydin RB; Mat I
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1696-705. PubMed ID: 23755576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Titanium nanostructures for biomedical applications.
    Kulkarni M; Mazare A; Gongadze E; Perutkova Š; Kralj-Iglič V; Milošev I; Schmuki P; A Iglič ; Mozetič M
    Nanotechnology; 2015 Feb; 26(6):062002. PubMed ID: 25611515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of Anodization-Electrolyte Aging on the Photocatalytic Activity of TiO
    Suhadolnik L; Marinko Ž; Ponikvar-Svet M; Tavčar G; Kovač J; Čeh M
    J Phys Chem C Nanomater Interfaces; 2020 Feb; 124(7):4073-4080. PubMed ID: 33343787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanotube nucleation phenomena on Ti-25Ta-xZr alloys for implants using ATO technique.
    Kim HJ; Jeong YH; Brantley WA; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7569-73. PubMed ID: 25942827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method.
    Li B; Hao J; Min Y; Xin S; Guo L; He F; Liang C; Wang H; Li H
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():80-6. PubMed ID: 25842111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and characterization of TiO
    Minagar S; Berndt CC; Gengenbach T; Wen C
    J Mater Chem B; 2014 Jan; 2(1):71-83. PubMed ID: 32261300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase.
    Roman I; Trusca RD; Soare ML; Fratila C; Krasicka-Cydzik E; Stan MS; Dinischiotu A
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():374-82. PubMed ID: 24582263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.
    Çalışkan N; Bayram C; Erdal E; Karahaliloğlu Z; Denkbaş EB
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():100-5. PubMed ID: 24411357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections.
    Ma M; Kazemzadeh-Narbat M; Hui Y; Lu S; Ding C; Chen DD; Hancock RE; Wang R
    J Biomed Mater Res A; 2012 Feb; 100(2):278-85. PubMed ID: 22045618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants.
    Chopra D; Gulati K; Ivanovski S
    Acta Biomater; 2021 Jun; 127():80-101. PubMed ID: 33744499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of hydroxide on the initial stages of anodic growth of TiO2 nanotubular arrays.
    Al-Abdullah ZT; Shin Y; Kler R; Perry CC; Zhou W; Chen Q
    Nanotechnology; 2010 Dec; 21(50):505601. PubMed ID: 21098934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells.
    Gulati K; Prideaux M; Kogawa M; Lima-Marques L; Atkins GJ; Findlay DM; Losic D
    J Tissue Eng Regen Med; 2017 Dec; 11(12):3313-3325. PubMed ID: 27925441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.
    Guan D; Cai C; Wang Y
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3641-50. PubMed ID: 21776749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.