These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25992454)

  • 21. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications.
    Rahmani S; Villa CH; Dishman AF; Grabowski ME; Pan DC; Durmaz H; Misra AC; Colón-Meléndez L; Solomon MJ; Muzykantov VR; Lahann J
    J Drug Target; 2015; 23(7-8):750-8. PubMed ID: 26453170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent progress in nano-biotechnology: compartmentalized micro- and nanoparticles via electrohydrodynamic co-jetting.
    Lahann J
    Small; 2011 May; 7(9):1149-56. PubMed ID: 21480519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneously manufactured nano-in-micro (SIMANIM) particles for dry-powder modified-release delivery of antibodies.
    Kaye RS; Purewal TS; Alpar HO
    J Pharm Sci; 2009 Nov; 98(11):4055-68. PubMed ID: 19189420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrosprayed Nanoparticles as Drug Delivery Systems for Biomedical Applications.
    Malik S; Subramanian S; Hussain T; Nazir A; Ramakrishna S
    Curr Pharm Des; 2022; 28(5):368-379. PubMed ID: 34587881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS.
    Mu L; Feng SS
    J Control Release; 2003 Jan; 86(1):33-48. PubMed ID: 12490371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymeric nanoparticulate system: a potential approach for ocular drug delivery.
    Nagarwal RC; Kant S; Singh PN; Maiti P; Pandit JK
    J Control Release; 2009 May; 136(1):2-13. PubMed ID: 19331856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered shapes using electrohydrodynamic atomization for an improved drug delivery.
    Yu DG; Gong W; Zhou J; Liu Y; Zhu Y; Lu X
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(3):e1964. PubMed ID: 38702912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymeric nanoparticles: Promising platform for drug delivery.
    El-Say KM; El-Sawy HS
    Int J Pharm; 2017 Aug; 528(1-2):675-691. PubMed ID: 28629982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrohydrodynamic Preparation of Nanomedicines.
    Rasekh M; Smith A; Arshad MS; Gunduz O; Van der Merwe SM; Smith G; Ahmad Z
    Curr Top Med Chem; 2015; 15(22):2316-27. PubMed ID: 26043737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Designing polymer conjugates as lysosomotropic nanomedicines.
    Duncan R
    Biochem Soc Trans; 2007 Feb; 35(Pt 1):56-60. PubMed ID: 17233601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs.
    Wang XQ; Zhang Q
    Eur J Pharm Biopharm; 2012 Oct; 82(2):219-29. PubMed ID: 22885229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New platforms for multi-functional ocular lenses: engineering double-sided functionalized nano-coatings.
    Mehta P; Justo L; Walsh S; Arshad MS; Wilson CG; O'Sullivan CK; Moghimi SM; Vizirianakis IS; Avgoustakis K; Fatouros DG; Ahmad Z
    J Drug Target; 2015 May; 23(4):305-10. PubMed ID: 25582133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classification of stimuli-responsive polymers as anticancer drug delivery systems.
    Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z
    Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies.
    Mehta P; Haj-Ahmad R; Rasekh M; Arshad MS; Smith A; van der Merwe SM; Li X; Chang MW; Ahmad Z
    Drug Discov Today; 2017 Jan; 22(1):157-165. PubMed ID: 27693432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel.
    Feng SS; Mu L; Win KY; Huang G
    Curr Med Chem; 2004 Feb; 11(4):413-24. PubMed ID: 14965222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrohydrodynamic atomization: a versatile process for preparing materials for biomedical applications.
    Wu Y; Clark RL
    J Biomater Sci Polym Ed; 2008; 19(5):573-601. PubMed ID: 18419939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Didanosine-loaded poly(epsilon-caprolactone) microparticles by a coaxial electrohydrodynamic atomization (CEHDA) technique.
    Seremeta KP; Höcht C; Taira C; Cortez Tornello PR; Abraham GA; Sosnik A
    J Mater Chem B; 2015 Jan; 3(1):102-111. PubMed ID: 32261930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pharmaceutical Amorphous Nanoparticles.
    Jog R; Burgess DJ
    J Pharm Sci; 2017 Jan; 106(1):39-65. PubMed ID: 27816266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flow Focusing: a versatile technology to produce size-controlled and specific-morphology microparticles.
    Martín-Banderas L; Flores-Mosquera M; Riesco-Chueca P; Rodríguez-Gil A; Cebolla A; Chávez S; Gañán-Calvo AM
    Small; 2005 Jul; 1(7):688-92. PubMed ID: 17193506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection.
    Wu Q; Liu D; Zhang X; Wang D; DongYe M; Chen W; Lin D; Zhu F; Chen W; Lin H
    Drug Deliv; 2019 Dec; 26(1):290-299. PubMed ID: 30895841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.