These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25992556)

  • 1. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes.
    Sturrock AM; Wikert JD; Heyne T; Mesick C; Hubbard AE; Hinkelman TM; Weber PK; Whitman GE; Glessner JJ; Johnson RC
    PLoS One; 2015; 10(5):e0122380. PubMed ID: 25992556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unnatural selection of salmon life histories in a modified riverscape.
    Sturrock AM; Carlson SM; Wikert JD; Heyne T; Nusslé S; Merz JE; Sturrock HJW; Johnson RC
    Glob Chang Biol; 2020 Mar; 26(3):1235-1247. PubMed ID: 31789453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating otolith and genetic tools to reveal intraspecific biodiversity in a highly impacted salmon population.
    Willmes M; Sturrock AM; Cordoleani F; Hugentobler S; Meek MH; Whitman G; Evans K; Palkovacs EP; Stauffer-Olsen NJ; Johnson RC
    J Fish Biol; 2024 Jul; ():. PubMed ID: 38982714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha that express different migratory phenotypes in the Willamette River, Oregon, U.S.A.
    Billman EJ; Whitman LD; Schroeder RK; Sharpe CS; Noakes DL; Schreck CB
    J Fish Biol; 2014 Oct; 85(4):1097-110. PubMed ID: 25082498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of water diversion and climate change for juvenile chinook salmon in the lemhi river basin (USA.).
    Walters AW; Bartz KK; McClure MM
    Conserv Biol; 2013 Dec; 27(6):1179-89. PubMed ID: 24299084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability in Migration Routes Influences Early Marine Survival of Juvenile Salmon Smolts.
    Furey NB; Vincent SP; Hinch SG; Welch DW
    PLoS One; 2015; 10(10):e0139269. PubMed ID: 26451837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adult spawners: A critical period for subarctic Chinook salmon in a changing climate.
    Howard KG; von Biela V
    Glob Chang Biol; 2023 Apr; 29(7):1759-1773. PubMed ID: 36661402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking climate change projections for an Alaskan watershed to future coho salmon production.
    Leppi JC; Rinella DJ; Wilson RR; Loya WM
    Glob Chang Biol; 2014 Jun; 20(6):1808-20. PubMed ID: 24323577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha.
    Bourret SL; Kennedy BP; Caudill CC; Chittaro PM
    J Fish Biol; 2014 Nov; 85(5):1507-25. PubMed ID: 25229130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freshwater movement patterns by juvenile Pacific salmon Oncorhynchus spp. before they migrate to the ocean: Oh the places you'll go!
    Shrimpton JM; Warren KD; Todd NL; McRae CJ; Glova GJ; Telmer KH; Clarke AD
    J Fish Biol; 2014 Oct; 85(4):987-1004. PubMed ID: 25053226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lake-specific variation in growth, migration timing and survival of juvenile sockeye salmon Oncorhynchus nerka: separating environmental from genetic influences.
    Reed TE; Martinek G; Quinn TP
    J Fish Biol; 2010 Aug; 77(3):692-705. PubMed ID: 20701648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predator swamping reduces predation risk during nocturnal migration of juvenile salmon in a high-mortality landscape.
    Furey NB; Hinch SG; Bass AL; Middleton CT; Minke-Martin V; Lotto AG
    J Anim Ecol; 2016 Jul; 85(4):948-59. PubMed ID: 27159553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial structuring of an evolving life-history strategy under altered environmental conditions.
    Hegg JC; Kennedy BP; Chittaro PM; Zabel RW
    Oecologia; 2013 Aug; 172(4):1017-29. PubMed ID: 23423520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candidate loci reveal genetic differentiation between temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha).
    O'Malley KG; Camara MD; Banks MA
    Mol Ecol; 2007 Dec; 16(23):4930-41. PubMed ID: 17971087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconciling fish and farms: Methods for managing California rice fields as salmon habitat.
    Holmes EJ; Saffarinia P; Rypel AL; Bell-Tilcock MN; Katz JV; Jeffres CA
    PLoS One; 2021; 16(2):e0237686. PubMed ID: 33626050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of migrating salmon smolts in large rivers with and without dams.
    Welch DW; Rechisky EL; Melnychuk MC; Porter AD; Walters CJ; Clements S; Clemens BJ; McKinley RS; Schreck C
    PLoS Biol; 2008 Oct; 6(10):e265. PubMed ID: 18959485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking otolith microchemistry and dendritic isoscapes to map heterogeneous production of fish across river basins.
    Brennan SR; Schindler DE
    Ecol Appl; 2017 Mar; 27(2):363-377. PubMed ID: 27875020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha.
    Johnson BM; Kemp BM; Thorgaard GH
    PLoS One; 2018; 13(1):e0190059. PubMed ID: 29320518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transporting juvenile salmonids around dams impairs adult migration.
    Keefer ML; Caudill CC; Peery CA; Lee SR
    Ecol Appl; 2008 Dec; 18(8):1888-900. PubMed ID: 19263886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying interactions among salmon populations from observed dynamics.
    Fujiwara M
    Ecology; 2008 Jan; 89(1):4-11. PubMed ID: 18376540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.