These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1045 related articles for article (PubMed ID: 25992718)
1. Individually adapted imagery improves brain-computer interface performance in end-users with disability. Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718 [TBL] [Abstract][Full Text] [Related]
2. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy. Müller-Putz GR; Daly I; Kaiser V J Neural Eng; 2014 Jun; 11(3):035011. PubMed ID: 24835837 [TBL] [Abstract][Full Text] [Related]
3. The effect of distinct mental strategies on classification performance for brain-computer interfaces. Friedrich EV; Scherer R; Neuper C Int J Psychophysiol; 2012 Apr; 84(1):86-94. PubMed ID: 22289414 [TBL] [Abstract][Full Text] [Related]
4. Defining and quantifying users' mental imagery-based BCI skills: a first step. Lotte F; Jeunet C J Neural Eng; 2018 Aug; 15(4):046030. PubMed ID: 29769435 [TBL] [Abstract][Full Text] [Related]
5. Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually. Friedrich EV; Neuper C; Scherer R PLoS One; 2013; 8(9):e76214. PubMed ID: 24086710 [TBL] [Abstract][Full Text] [Related]
6. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845 [TBL] [Abstract][Full Text] [Related]
7. Long-term evaluation of a 4-class imagery-based brain-computer interface. Friedrich EV; Scherer R; Neuper C Clin Neurophysiol; 2013 May; 124(5):916-27. PubMed ID: 23290926 [TBL] [Abstract][Full Text] [Related]
8. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users. Tibrewal N; Leeuwis N; Alimardani M PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703 [TBL] [Abstract][Full Text] [Related]
9. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior. Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of induced and evoked changes in EEG during selective attention to verbal stimuli. Horki P; Bauernfeind G; Schippinger W; Pichler G; Müller-Putz GR J Neurosci Methods; 2016 Sep; 270():165-176. PubMed ID: 27329006 [TBL] [Abstract][Full Text] [Related]
11. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network. Zhang T; Liu T; Li F; Li M; Liu D; Zhang R; He H; Li P; Gong J; Luo C; Yao D; Xu P Neuroimage; 2016 Jul; 134():475-485. PubMed ID: 27103137 [TBL] [Abstract][Full Text] [Related]
13. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. Vourvopoulos A; Bermúdez I Badia S J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007 [TBL] [Abstract][Full Text] [Related]
14. Detection of motor imagery of swallow EEG signals based on the dual-tree complex wavelet transform and adaptive model selection. Yang H; Guan C; Chua KS; Chok SS; Wang CC; Soon PK; Tang CK; Ang KK J Neural Eng; 2014 Jun; 11(3):035016. PubMed ID: 24836742 [TBL] [Abstract][Full Text] [Related]
15. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study. Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295 [TBL] [Abstract][Full Text] [Related]
16. A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface. Ang KK; Guan C; Chua KS; Ang BT; Kuah CW; Wang C; Phua KS; Chin ZY; Zhang H Clin EEG Neurosci; 2011 Oct; 42(4):253-8. PubMed ID: 22208123 [TBL] [Abstract][Full Text] [Related]
17. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface. Hänselmann S; Schneiders M; Weidner N; Rupp R J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933 [TBL] [Abstract][Full Text] [Related]
18. EEG oscillatory patterns and classification of sequential compound limb motor imagery. Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435 [TBL] [Abstract][Full Text] [Related]
19. Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation. Benzy VK; Vinod AP; Subasree R; Alladi S; Raghavendra K IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3051-3062. PubMed ID: 33211662 [TBL] [Abstract][Full Text] [Related]
20. EEG-based classification of imaginary left and right foot movements using beta rebound. Hashimoto Y; Ushiba J Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]