BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25992737)

  • 1. Topological polymorphism of the two-start chromatin fiber.
    Norouzi D; Zhurkin VB
    Biophys J; 2015 May; 108(10):2591-2600. PubMed ID: 25992737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological diversity of chromatin fibers: Interplay between nucleosome repeat length, DNA linking number and the level of transcription.
    Norouzi D; Katebi A; Cui F; Zhurkin VB
    AIMS Biophys; 2015; 2(4):613-629. PubMed ID: 28133628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation of the 30-nanometer chromatin fiber.
    Wedemann G; Langowski J
    Biophys J; 2002 Jun; 82(6):2847-59. PubMed ID: 12023209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological polymorphism of nucleosome fibers and folding of chromatin.
    Zhurkin VB; Norouzi D
    Biophys J; 2021 Feb; 120(4):577-585. PubMed ID: 33460599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling studies of chromatin fiber structure as a function of DNA linker length.
    Perišić O; Collepardo-Guevara R; Schlick T
    J Mol Biol; 2010 Nov; 403(5):777-802. PubMed ID: 20709077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
    Collepardo-Guevara R; Schlick T
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8061-6. PubMed ID: 24847063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local geometry and elasticity in compact chromatin structure.
    Koslover EF; Fuller CJ; Straight AF; Spakowitz AJ
    Biophys J; 2010 Dec; 99(12):3941-50. PubMed ID: 21156136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A critical role for linker DNA in higher-order folding of chromatin fibers.
    Brouwer T; Pham C; Kaczmarczyk A; de Voogd WJ; Botto M; Vizjak P; Mueller-Planitz F; van Noort J
    Nucleic Acids Res; 2021 Mar; 49(5):2537-2551. PubMed ID: 33589918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changing chromatin fiber conformation by nucleosome repositioning.
    Müller O; Kepper N; Schöpflin R; Ettig R; Rippe K; Wedemann G
    Biophys J; 2014 Nov; 107(9):2141-50. PubMed ID: 25418099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choreography for nucleosomes: the conformational freedom of the nucleosomal filament and its limitations.
    Engelhardt M
    Nucleic Acids Res; 2007; 35(16):e106. PubMed ID: 17704136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometrical, conformational and topological restraints in regular nucleosome compaction in chromatin.
    Scipioni A; Turchetti G; Morosetti S; De Santis P
    Biophys Chem; 2010 May; 148(1-3):56-67. PubMed ID: 20236753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA topology in chromatin is defined by nucleosome spacing.
    Nikitina T; Norouzi D; Grigoryev SA; Zhurkin VB
    Sci Adv; 2017 Oct; 3(10):e1700957. PubMed ID: 29098179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.
    Kepper N; Foethke D; Stehr R; Wedemann G; Rippe K
    Biophys J; 2008 Oct; 95(8):3692-705. PubMed ID: 18212006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. A relaxation study of tetrasomes on DNA minicircles.
    Sivolob A; De Lucia F; Alilat M; Prunell A
    J Mol Biol; 2000 Jan; 295(1):55-69. PubMed ID: 10623508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation of chromatin stretching.
    Aumann F; Lankas F; Caudron M; Langowski J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041927. PubMed ID: 16711856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin fibers stabilize nucleosomes under torsional stress.
    Kaczmarczyk A; Meng H; Ordu O; Noort JV; Dekker NH
    Nat Commun; 2020 Jan; 11(1):126. PubMed ID: 31913285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleosome interactions in chromatin: fiber stiffening and hairpin formation.
    Mergell B; Everaers R; Schiessel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011915. PubMed ID: 15324096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological analysis of plasmid chromatin from yeast and mammalian cells.
    Tong W; Kulaeva OI; Clark DJ; Lutter LC
    J Mol Biol; 2006 Sep; 361(5):813-22. PubMed ID: 16890953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosome dynamics. III. Histone tail-dependent fluctuation of nucleosomes between open and closed DNA conformations. Implications for chromatin dynamics and the linking number paradox. A relaxation study of mononucleosomes on DNA minicircles.
    De Lucia F; Alilat M; Sivolob A; Prunell A
    J Mol Biol; 1999 Jan; 285(3):1101-19. PubMed ID: 9918719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleosome conformational flexibility and implications for chromatin dynamics.
    Sivolob A; Prunell A
    Philos Trans A Math Phys Eng Sci; 2004 Jul; 362(1820):1519-47. PubMed ID: 15306464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.