These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25992738)

  • 1. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit.
    Fitzgibbon S; Spann AP; Qi QM; Shaqfeh ESG
    Biophys J; 2015 May; 108(10):2601-2608. PubMed ID: 25992738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of margination of platelet-sized particles in red blood cell suspensions flowing through Y-shaped bifurcating microchannels.
    Sugihara-Seki M; Onozawa T; Takinouchi N; Itano T; Seki J
    Biorheology; 2020; 57(2-4):101-116. PubMed ID: 33523035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. White blood cell margination in microcirculation.
    Fedosov DA; Gompper G
    Soft Matter; 2014 May; 10(17):2961-70. PubMed ID: 24695813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Hematocrit on Platelet Adhesion: Experiments and Simulations.
    Spann AP; Campbell JE; Fitzgibbon SR; Rodriguez A; Cap AP; Blackbourne LH; Shaqfeh ESG
    Biophys J; 2016 Aug; 111(3):577-588. PubMed ID: 27508441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape.
    D'Apolito R; Tomaiuolo G; Taraballi F; Minardi S; Kirui D; Liu X; Cevenini A; Palomba R; Ferrari M; Salvatore F; Tasciotti E; Guido S
    J Control Release; 2015 Nov; 217():263-72. PubMed ID: 26381900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platelet near-wall excess in porcine whole blood in artery-sized tubes under steady and pulsatile flow conditions.
    Xu C; Wootton DM
    Biorheology; 2004; 41(2):113-25. PubMed ID: 15090680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Margination of Platelet-Sized Particles in the Red Blood Cell Suspension Flow through Square Microchannels.
    Sugihara-Seki M; Takinouchi N
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Tracking of Particles and Quantification of Margination in Blood Flow.
    Carboni EJ; Bognet BH; Bouchillon GM; Kadilak AL; Shor LM; Ward MD; Ma AWK
    Biophys J; 2016 Oct; 111(7):1487-1495. PubMed ID: 27705771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of shear rate, confinement, and particle parameters on margination in blood flow.
    Mehrabadi M; Ku DN; Aidun CK
    Phys Rev E; 2016 Feb; 93(2):023109. PubMed ID: 26986415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of red blood cell deformability on hematocrit profiles and platelet margination.
    Czaja B; Gutierrez M; Závodszky G; de Kanter D; Hoekstra A; Eniola-Adefeso O
    PLoS Comput Biol; 2020 Mar; 16(3):e1007716. PubMed ID: 32163405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate.
    Tilles AW; Eckstein EC
    Microvasc Res; 1987 Mar; 33(2):211-23. PubMed ID: 3587076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of critical parameters in platelet margination.
    Reasor DA; Mehrabadi M; Ku DN; Aidun CK
    Ann Biomed Eng; 2013 Feb; 41(2):238-49. PubMed ID: 22965639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension.
    Vahidkhah K; Bagchi P
    Soft Matter; 2015 Mar; 11(11):2097-109. PubMed ID: 25601616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of particle collisions and aggregation on red blood cell passage through a bifurcation.
    Chesnutt JK; Marshall JS
    Microvasc Res; 2009 Dec; 78(3):301-13. PubMed ID: 19766127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of margination and red cell augmented platelet diffusivity on platelet adhesion in complex flow.
    Jordan A; David T; Homer-Vanniasinkam S; Graham A; Walker P
    Biorheology; 2004; 41(5):641-53. PubMed ID: 15477670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The initiation of post-capillary margination of leukocytes: studies in vitro on the influence of erythrocyte concentration and flow velocity.
    Bagge U; Blixt A; Strid KG
    Int J Microcirc Clin Exp; 1983; 2(3):215-27. PubMed ID: 6678848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
    Ahmed F; Mehrabadi M; Liu Z; Barabino GA; Aidun CK
    J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29715334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.