BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25992778)

  • 1. Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA.
    Lavender CA; Lorenz R; Zhang G; Tamayo R; Hofacker IL; Weeks KM
    PLoS Comput Biol; 2015 May; 11(5):e1004126. PubMed ID: 25992778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.
    Schäferkordt J; Wagner R
    Nucleic Acids Res; 2001 Aug; 29(16):3394-403. PubMed ID: 11504877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing.
    Tang TH; Rozhdestvensky TS; d'Orval BC; Bortolin ML; Huber H; Charpentier B; Branlant C; Bachellerie JP; Brosius J; Hüttenhofer A
    Nucleic Acids Res; 2002 Feb; 30(4):921-30. PubMed ID: 11842103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and structural conservation in RNA ribose zippers.
    Tamura M; Holbrook SR
    J Mol Biol; 2002 Jul; 320(3):455-74. PubMed ID: 12096903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction.
    Doshi KJ; Cannone JJ; Cobaugh CW; Gutell RR
    BMC Bioinformatics; 2004 Aug; 5():105. PubMed ID: 15296519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli.
    Kitahara K; Yasutake Y; Miyazaki K
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19220-5. PubMed ID: 23112186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allele-specific structure probing of plasmid-derived 16S ribosomal RNA from Escherichia coli.
    Powers T; Noller HF
    Gene; 1993 Jan; 123(1):75-80. PubMed ID: 7678570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational analysis of Escherichia coli 30S ribosomes containing the single-base mutations G530U, U1498G, G1401C, and C1501G and the double-base mutation G1401C/C1501G.
    Moine H; Nurse K; Ehresmann B; Ehresmann C; Ofengand J
    Biochemistry; 1997 Nov; 36(44):13700-9. PubMed ID: 9354641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting U-turns in ribosomal RNA with comparative sequence analysis.
    Gutell RR; Cannone JJ; Konings D; Gautheret D
    J Mol Biol; 2000 Jul; 300(4):791-803. PubMed ID: 10891269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three dimensional model for the 16S ribosomal RNA that incorporates information for the mRNA track.
    Wollenzien P; Juzumiene D; Shapkina T; Minchew P
    Nucleic Acids Symp Ser; 1995; (33):76-8. PubMed ID: 8643405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constraining ribosomal RNA conformational space.
    Favaretto P; Bhutkar A; Smith TF
    Nucleic Acids Res; 2005; 33(16):5106-11. PubMed ID: 16155182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence of the 235 rRNA from Haloferax mediterranei and phylogenetic analysis of halophilic archaea based on LSU rRNA.
    Briones C; Amils R
    Syst Appl Microbiol; 2000 Apr; 23(1):124-31. PubMed ID: 10879986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identities and phylogenetic comparisons of posttranscriptional modifications in 16 S ribosomal RNA from Haloferax volcanii.
    Kowalak JA; Bruenger E; Crain PF; McCloskey JA
    J Biol Chem; 2000 Aug; 275(32):24484-9. PubMed ID: 10818097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dimensional model for the 16S ribosomal RNA in the Escherichia coli ribosome.
    Minchew P; Joy S; Bhangu R; Wollenzien P
    Nucleic Acids Symp Ser; 1995; (33):68-9. PubMed ID: 8643402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA.
    Lodmell JS; Dahlberg AE
    Science; 1997 Aug; 277(5330):1262-7. PubMed ID: 9271564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and analysis of base-paired regions of the 16S rRNA in the 30S ribosomal subunit determined by constraint satisfaction molecular modelling.
    Dolan MA; Babin P; Wollenzien P
    J Mol Graph Model; 2001; 19(6):495-513. PubMed ID: 11552678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 16S-like, 5.8S and 23S-like rRNAs of the two varieties of Cryptococcus neoformans: sequence, secondary structure, phylogenetic analysis and restriction fragment polymorphisms.
    Fan M; Currie BP; Gutell RR; Ragan MA; Casadevall A
    J Med Vet Mycol; 1994; 32(3):163-80. PubMed ID: 7525916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate SHAPE-directed RNA structure determination.
    Deigan KE; Li TW; Mathews DH; Weeks KM
    Proc Natl Acad Sci U S A; 2009 Jan; 106(1):97-102. PubMed ID: 19109441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs.
    Cannone JJ; Subramanian S; Schnare MN; Collett JR; D'Souza LM; Du Y; Feng B; Lin N; Madabusi LV; Müller KM; Pande N; Shang Z; Yu N; Gutell RR
    BMC Bioinformatics; 2002; 3():2. PubMed ID: 11869452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional relationship between helix 1 and the 900 tetraloop of 16S ribosomal RNA within the bacterial ribosome.
    Bélanger F; Théberge-Julien G; Cunningham PR; Brakier-Gingras L
    RNA; 2005 Jun; 11(6):906-13. PubMed ID: 15872184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.