BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25992951)

  • 1. Rational Design and Facial Synthesis of Li3V2(PO4)3@C Nanocomposites Using Carbon with Different Dimensions for Ultrahigh-Rate Lithium-Ion Batteries.
    Mao WF; Fu YB; Zhao H; Ai G; Dai YL; Meng D; Zhang XH; Qu D; Liu G; Battaglia VS; Tang ZY
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12057-66. PubMed ID: 25992951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthracite-Derived Dual-Phase Carbon-Coated Li
    Ding XK; Zhang LL; Yang XL; Fang H; Zhou YX; Wang JQ; Ma D
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42788-42796. PubMed ID: 29155556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional LiMnPO4·Li3V2(PO4)3/C Nanocomposite as a Bicontinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries.
    Luo Y; Xu X; Zhang Y; Pi Y; Yan M; Wei Q; Tian X; Mai L
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17527-34. PubMed ID: 26196544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries.
    Li D; Tian M; Xie R; Li Q; Fan X; Gou L; Zhao P; Ma S; Shi Y; Yong HT
    Nanoscale; 2014 Mar; 6(6):3302-8. PubMed ID: 24510276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries.
    Duan W; Hu Z; Zhang K; Cheng F; Tao Z; Chen J
    Nanoscale; 2013 Jul; 5(14):6485-90. PubMed ID: 23749042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Co-incorporated pristine and Fe-doped Li
    Sun HB; Zhang LL; Yang XL; Liang G; Li Z
    Dalton Trans; 2016 Oct; 45(39):15317-15325. PubMed ID: 27524269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bicontinuous Structure of Li₃V₂(PO₄)₃ Clustered via Carbon Nanofiber as High-Performance Cathode Material of Li-Ion Batteries.
    Chen L; Yan B; Xu J; Wang C; Chao Y; Jiang X; Yang G
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13934-43. PubMed ID: 26053376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic-liquid-assisted synthesis of nanostructured and carbon-coated Li3V2(PO4)3 for high-power electrochemical storage devices.
    Zhang X; Böckenfeld N; Berkemeier F; Balducci A
    ChemSusChem; 2014 Jun; 7(6):1710-8. PubMed ID: 24683038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating size of Li3V2(PO4)3 with reduced graphene oxide: towards high-performance composite cathode for lithium ion batteries.
    Zhu X; Yan Z; Wu W; Zeng W; Du Y; Zhong Y; Zhai H; Ji H; Zhu Y
    Sci Rep; 2014 Aug; 4():5768. PubMed ID: 25169810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries.
    Zhang R; Zhang Y; Zhu K; Du F; Fu Q; Yang X; Wang Y; Bie X; Chen G; Wei Y
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12523-30. PubMed ID: 25010184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on Zr incorporation into Li
    Sun HB; Zhou YX; Zhang LL; Yang XL; Cao XZ; Arave H; Fang H; Liang G
    Phys Chem Chem Phys; 2017 Feb; 19(7):5155-5162. PubMed ID: 28140410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bi-doped Li3V2(PO4)3/C cathode material with an enhanced high-rate capacity and long cycle stability for lithium ion batteries.
    Cheng Y; Feng K; Zhou W; Zhang H; Li X; Zhang H
    Dalton Trans; 2015 Oct; 44(40):17579-86. PubMed ID: 26391695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanorod-Nanoflake Interconnected LiMnPO
    Cao X; Pan A; Zhang Y; Li J; Luo Z; Yang X; Liang S; Cao G
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27632-27641. PubMed ID: 27668666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Reducing Agent on Solution Synthesis of Li
    Yaghtin A; Masoudpanah SM; Hasheminiasari M; Salehi A; Safanama D; Ong CK; Adams S; Reddy MV
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32824503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemistry-Enabled 3D Foams for Ultrafast Battery Cathodes.
    Zhou Y; Rui X; Sun W; Xu Z; Zhou Y; Ng WJ; Yan Q; Fong E
    ACS Nano; 2015 Apr; 9(4):4628-35. PubMed ID: 25858505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on
    Zhong S; Zhang X; Liu J; Sui Y
    Front Chem; 2020; 8():361. PubMed ID: 32457873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries.
    Kang J; Mathew V; Gim J; Kim S; Song J; Im WB; Han J; Lee JY; Kim J
    Sci Rep; 2014 Feb; 4():4047. PubMed ID: 24509825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.
    Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative investigation of phosphate-based composite cathode materials for lithium-ion batteries.
    Zheng JC; Han YD; Zhang B; Shen C; Ming L; Zhang JF
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13520-6. PubMed ID: 25090161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.